

Università degli Studi di Padova

OVERRUNNING DATA METHODS: COMPARISONS BASED ON REAL DATA TRIAL

NICOLA SORIANI, ILEANA BALDI, DARIO GREGORI

ROeS 2013 Dornbirn, September 9th - 12th 2013

UNIVERSITÀ DECLI STUDI DI PADOVA Table of contents				
Introduction				
Overrunning data Methods				
Simulation studies:				
Superiority trial				
Non-Inferiority trial				
Conclusions and Remarks				

Universită decli Studi di Padova	Goals
 To study the effect methods proposed 	t of including overrunning data on the behaviors of the d in the literature over the years.
 To study if and ho type-I error and po 	w the overrunning data sizes affect on the method levels of ower.
 To determine whe systematic use whetay 	ther one of these methods could be suggested for a nen overrunning occurs.

are compared with a suitable sequence $(\alpha_1, \alpha_2, ..., \alpha_K)$ of nominal significance levels, chosen to control the type-I error probability.

Including Overrunning Data Methods

- Overrunning data collected according to the trial protocol are considered valid and should be included in the analyses (CPMP/EWP/2459/02 London: EMEA, 2007; Sooriyarachchi et al. 2003).
- · Results and conclusions could be affected by overrunning data.
- Many proposals to incorporate overrunning data were presented as direct extensions of methods of analyzing data from a sequential trial without overrunning.
 - Deletion Methods (Whitehead, 1992).
 - Combining p-values (Hall & Ding, 2001).
 - Repeated Confidence Intervals (Jennison & Turnbull, 1989).

	Università degli Studi di Padova	Simulation studies (keypoints)
• A su studi	periority and a es.	a non-inferiority real trials are used as bases for simulation
• The	primary endpo	pints are event rates.
• <i>θ</i> is l	og odds-ratio	
• O'Bri	ien and Flemi	ng design with three IAs is adopted.
• 100,1 hypo	000 full trials otheses.	are simulated under a null (H_0) and an alternative (H_1)

UNIVERSITÀ DEGLI STUDI DI PADOVA Superiority trial			
 Based on the ASCLEPIOS study (Whitehead, 1993). 			
 Superiority of an experimental calcium channel blocker with a placebo control in the immediate treatment of patients accusing an acute ischemic stroke. 			
The death rate is the primary endpoint.			
• Trial design: • $p_{C} = 0.15, p_{E} = 0.09;$			
• power= 90%;			
2.5% one-sided significance level.			
 Sample size of 1248 (624 in each treatment group, 416 for IA stage) 			
• $H_0: \theta = 0$ and $H_1: \theta = 0.58$.			
• $n_o = (30,50,100,150,200)$ responses for treatment arm.			

· RCIs method seems the most conservative.

Università decli Studi di Padova

Non-Inferiority: First interim results

UNIVERSITÀ

di Padova

Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika, 64(2), 191-199.

Sooriyarachchi, M. R., Whitehead, J., Bolland, K., & Whitehead, A. (2003). Incorporating data received after a sequential trial has stopped into the final analysis: implementation and comparison of methods. Biometrics, 59(3), 701-709.

Whitehead, J. (1992). Overrunning and underrunning in sequential clinical trials. Control Clin Trials, 13(2), 106-121.

Whitehead, J. (1993). Application of sequential methods to a phase III clinical trial in stroke. Drug Information Journal, 27(3), 733-740.

Whitehead, J. (1997). The design and analysis of sequential clinical trials: John Wiley & Sons.

Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design (CPMP/EWP/2459/02). London: EMEA; 18 October 2007.

