Analysis of Association on Non-Product Spaces

Anna Klimova

IST Austria
September 11, 2013

Joint work with Tamás Rudas

Outline

- Motivation.
- Relational models without the overall effect.
- Properties of the MLE.
- Computation of the MLE.
- A sample space is a proper subset of the Cartesian product of the ranges of the variables of interest (structural zeros - combinations that do not exist logically or in a particular population)
- Patterns of participation in waves of a panel study
- Lists of traffic violations
- Market basket analysis
- Congenital malformations

Data: Indicators of Features

	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5
1	1	0	1	1	1
2	1	1	1	0	1
3	1	1	1	0	0
4	1	1	0	0	0
5	1	0	1	1	1
6	1	0	0	0	0
7	0	1	1	1	0
8	0	1	0	1	0
9	0	1	1	0	1
10	0	1	1	0	1

At least one feature is present.

Independence of Malformations

- Do malformations X_{1} and X_{2} occur independently of each other?

	X_{1}	
X_{2}	No	Yes
No	-	\mathbf{p}_{01}
Yes	\mathbf{p}_{10}	\mathbf{p}_{11}

The model of independence: $\quad \mathbf{p}_{11}=\mathbf{p}_{01} \mathbf{p}_{10}$.
A.Klimova, T.Rudas, A.Dobra (2012).

Relational Models for Contingency Tables.
J. Multivariate Anal., 104, 159-173.

Observed Data
Patient $X_{1} \quad X_{2}$

Relational Model

The model of independence: $\quad \mathbf{p}_{11}=\mathbf{p}_{01} \mathbf{p}_{10}$.
Generating subsets: $\quad X_{1}$ is present; X_{2} is present.
Model matrix: $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$.
Log-linear representation: $\log \mathbf{p}=\mathbf{A}^{\prime} \boldsymbol{\beta}$, where $\boldsymbol{\beta}=\exp (\boldsymbol{\theta})$.

Multiplicative representation:
$p_{01}=\theta_{1}, p_{10}=\theta_{2}, p_{11}=\theta_{1} \theta_{2}$.
Under such a model, there is no parameter that is common to every cell in the table. This is a model without the overall effect.

MLE in Curved Families

- Assume that the observed distribution q is positive. The MLE $\hat{\mathbf{p}}$ exists, and it is the unique solution of the system:

$$
\begin{array}{r}
\mathbf{A} \hat{\mathbf{p}}=\gamma \mathbf{A q} \\
p_{01} p_{10}=p_{11} \\
p_{11}+p_{01}+p_{10}=1
\end{array}
$$

- Here $\gamma=\gamma(\mathbf{q})$ is an adjustment factor.
- The mean-value parameters of the MLE are proportional to those of the observed distribution. (For regular exponential families, they are equal!).

How IPF works

- Starts with a distribution $\mathbf{p}^{(0)}$ in the model:
$p_{01}^{(0)} p_{10}^{(0)}=p_{11}^{(0)}$.
- Rescales the components of $\mathbf{p}^{(n)}$ according to the values of $A_{j} \mathbf{q}$, where A_{j} are the rows of \mathbf{A} :

$$
p_{i j}^{(n)}=p_{i j}^{(n-1)}\left(\frac{A_{j} \mathbf{q}}{A_{j} \mathbf{p}^{(n-1)}}\right)^{a_{j i}}
$$

- The sequence $\mathbf{p}^{(n)}$ converges to a \mathbf{p}^{*} that satisfies

$$
\mathbf{A} \mathbf{p}^{*}=\mathbf{A q}, p_{01}^{*} p_{10}^{*}=p_{11}^{*} .
$$

- If $p_{01}^{*}+p_{10}^{*}+p_{11}^{*}=1$, then $\mathbf{p}^{*}=\hat{\mathbf{p}}$ is the MLE.
- Can this procedure be modified to include the adjustment factor: $\mathbf{A} \hat{\mathbf{p}}=\gamma \mathbf{A q}$? Is it implied that $p_{01}^{*}+p_{10}^{*}+p_{11}^{*}=1$?

G-IPF Algorithm (Klimova and Rudas, 2013)

- Select a value $\tilde{\gamma}$ of the adjustment factor.
- Choose a $\mathbf{p}^{(0)}$ in the model: $p_{01}^{(0)} p_{10}^{(0)}=p_{11}^{(0)}$.
- Rescale the components of $p^{(n)}$:

$$
p_{i j}^{(n)}=p_{i j}^{(n-1)}\left(\tilde{\gamma} \frac{A_{j} \mathbf{q}}{A_{j} \mathbf{p}^{(n-1)}}\right)^{a_{j i}} .
$$

- Then $\mathbf{p}^{(n)} \rightarrow \tilde{\mathbf{p}}$ that satisfies $\mathbf{A} \tilde{\mathbf{p}}=\tilde{\gamma} \mathbf{A q}, \tilde{p}_{01} \tilde{p}_{10}=\tilde{p}_{11}$.
- If $\tilde{p}_{01}+\tilde{p}_{10}+\tilde{p}_{11}=1$, then \tilde{p} is the MLE.
- Otherwise, choose a smaller or a larger $\tilde{\gamma}$ depending on whether $\tilde{p}_{01}+\tilde{p}_{10}+\tilde{p}_{11}>1$ or $\tilde{p}_{01}+\tilde{p}_{10}+\tilde{p}_{11}<1$.

G-IPF (Klimova and Rudas, 2013)
Iterative Scaling in Curved Exponential Families. arXiv: 1307.3282

- The algorithm converges to the MLE.
- The proof of convergence is based on Bregman divergence (generalization of Kullback-Leibler divergence).
- R-package gIPFrm.

	X_{1}	
X_{2}	No	Yes
No	-	$47(44.872)$
Yes	$42(39.679)$	$13(17.456)$

The adjustment factor $=1.039 . \quad \mathrm{P}$-value $=0.24$.

