Overview

- What is absolute risk?
- Counseling
- Cancer prevention in the population
- Do SNPs add much in these applications?

Absolute Risk for Breast Cancer	
Computed from Gail et al., JNCI, 1989	
age $\mathbf{4 0}$	
Menarche age 14	baseline risk
Nulliparous	increased risk
No biopsies	baseline risk
Mother had breast cancer	increased risk
What is the chance that this woman will	
be diagnosed with breast cancer by age	
$70 ? ~ 0.116(11.6 \%)$	

Using Risk Models to Counsel Women for Early Detection or Prevention

- General perspective on risk
- Formal weighing of risks and benefits

Should a Woman in her Forties Have Screening Mammography?

- US Prev. Services Task Force (AIM, 2009)
- "recommends against routine screening mammography in women aged 40 to 49 years."
- No factors except age and deleterious mutations "conveys a clinically important absolute increased risk for cancer."
- Decision based instead on "patient context, including the patient's values regarding specific benefits and harms."

Counter-example

A 40-year old woman is uncertain whether to have screening mammograms. Her mother and sister had breast cancer. Her 5 -year absolute risk (1.8\%) exceeds that of a 50 -year old woman without risk factors (0.6\%).

Women in Their Forties with the Breast Cancer Risk of a 50-Year Old Woman with No Risk Factors

- Non-Hispanic White Women 11.6 million (74\%)
- Non-Hispanic Black Women 0.85 million (31\%)

Wu, Graubard, Gail AIM 2012

Weighing the Risks and Benefits of Tamoxifen

Gail, Costantino, Bryant, Croyle, Freedman, HelzIsouer, Vogel, JNCI 1999; 91:1829-46

TAMOXIFEN EFFECTS ON LIFE-THREATENING EVENTS	
	RR (95\% CI)
INVASIVE BREAST CANCER	0.51 (0.39-.66)
HIP FRACTURE	0.55 (0.25-1.1)
ENDOMETRIAL CANCER	
<50	2.5 (1.4-5.0)
50+	4.0 (1.7-11)
STROKE	1.6 (0.9-2.8)
PULMONARY EMBOLUS	3.0 (1.2-9.3)
Fisher et al, JNCI, 1998	

NET BENEFIT INDEX* FOR 10,000 WOMEN WITH UTERI OVER 5 YEARS				
INVASIVE	WHITE		BLACK	
BREAST CA	40-49	50-59	40-49	50-59
RISK (5 YEARS)				
2\%	73	-75	14	-187
4\%	196	38	137	-74
6\%	318	149	259	37
*Net number of life the net number of	hreaten evere e	events p spreven	ented plus	s half

Benefit/risk indices for tamoxifen and raloxifene for white non-Hispanic women with a uterus							
5.year risk	Tamoxifen			Raloxifene			Strong evidence ofbenefits outweighingrisksModerate evidence ofbenefits outweighingrisksBenefits do notoutweigh risks
	50.59	60.69	70.79	50.59	60.69	70.79	
1.5	-133	. 310	${ }^{325}$	${ }^{21}$	11	15	
20	- 105	${ }^{233}$	${ }^{28}$	${ }^{43}$	1	7	
2.5	78	${ }^{255}$	${ }^{271}$	${ }^{\text {a }}$	${ }^{33}$	${ }^{29}$	
${ }^{3} 0$	5	${ }^{228}$	${ }^{24}$	${ }_{86}$	${ }_{55}$	51	
${ }^{3.5}$	${ }^{25}$	${ }^{202}$	${ }^{217}$	108	${ }^{76}$	7	
4.0	3	.175	. 190	${ }^{128}$	${ }_{9}$	${ }^{9}$	
4.5	${ }^{29}$	${ }^{148}$	1184	150	${ }^{19}$	${ }^{115}$	
5.0	${ }_{56}$	-121	137	172	${ }_{1} 40$	${ }^{136}$	
5.5	${ }^{83}$	5	111	193	161	${ }^{157}$	
6.0	${ }^{109}$	60	8	214	183	179	
${ }_{6} .5$	${ }^{135}$	4	. 58	${ }^{238}$	204	${ }^{198}$	
7.0	182	15	${ }_{3}$	256	225	${ }^{22}$	
$\underset{\substack{\text { 5.veaf proieade } \\ \text { risk of ficis }}}{ }$	Cuidian	crid dase	$\overline{w+1}$	Combining using WHI	tiom		
Freedman	Netal	2011:	9:2327-2				mansorancalococor

Risk Models in Population Cancer

Prevention

- Designing prevention trials
- Assessing population absolute risk reduction from prevention strategies
- "High risk" strategy for interventions with adverse side-effects
- Allocation of preventive resources under cost constraints

Some SNPs Associated with Breast Cancer

Location	Disease Allele Frequency	Odds Ratio per Allele	Reference
FGFR2	0.38	1.26	1
TNRC9 (or TOX3)	0.25	1.20	1
MAP3K1	0.28	1.13	1
LSP1	0.30	1.07	1
CASP8	0.87	1.136	2
8q	0.40	1.08	1
2q35	0.497	1.20	3
		Geometric mean	
		1.15	

1. Easton et al., Nature 2007;447:1087-1095
2. Cox et al., Nature Genetics 2007;39:352-358
3. Stacey et al., Nature Genetics 2007;39:865-869

Comparisons of Discriminatory Accuracy

Model	Age-specific AUC
7-SNPs	0.574
11-SNPs	0.585
18-SNPs	0.587
"Foreseeable SNPs" (70)	0.635
BCRAT	0.607
BCRAT+ 7-SNPs	0.632
BCRAT+11-SNPs	0.637
BCRAT+ "Foreseeable SNPs"	0.670
BCRAT + Mam. Density	0.654

Risk Models in Population Cancer

Prevention

- Designing prevention trials
- Assessing population absolute risk reduction from prevention strategies
- "High risk" strategy for interventions with adverse side-effects
- Allocation of preventive resources under cost constraints

Decision to Take Tamoxifen in 100,000 Women with Uteri, Aged 50-59

Health Outcome	Relative Risk	\# Cases If No Tamoxifen	\# Cases If All Tamoxifen
Invasive Br. Ca.	0.51	246.6	125.8
Hip Fracture	0.55	101.6	55.9
Endometrial Ca.	4.01	81.4	326.4
Stroke	1.59	110	174.9
Pulmonary Emb.	3.01	50	150.5
Total		589.6	833.5

Threshold Risk r* for Optimal Decision

- Only women with risk $r^{*}>774.3 / 10^{5}$ have a positive net expected benefit from tamoxifen
- Only about 1% of this population has a risk this high
- Very small "high risk group" means limited potential for prevention, unless practically all the cancers arise from this small group

Life-Threatening Events per Year in 10^{5} 50-59 Year Old Women with Uteri with Various Prevention Strategies

Strategy	Expected Life- Threatening Events (Improvement)
None get tamoxifen	589.6
BCRAT $>$ r $^{\star}=744 / 10^{5}$	$588.2(-1.4)$
BCRAT+7 SNPs $>$ r *	$587.8(-1.8)$
Perfect Breast Cancer Model	$469.7(-119.9)$

Approaches to Improve the High-Risk Strategy

- Improve the interventions
- Less toxic
- More effective in preventing breast cancer
- Improve discriminatory accuracy of the breast cancer risk model
- Model the risks of the other health outcomes affected by the intervention, such as stroke (Gail, SIM 2012)

Risk Models in Population Cancer Prevention

- Designing prevention trials
- Assessing population absolute risk reduction from prevention strategies
- "High risk" strategy for interventions with adverse side-effects
- Allocation of preventive resources under cost constraints

Mammography strategies based on risk if only enough money to give mammograms to half the population			
mammograms	Mammograms at random		
Allocation by			
BCRAT rank			Allocation by
:---			
BCRAT +7 SNPs rank			

Absolute Risk Models in Prevention - Summary

- Counseling patients
- General perspective
- Weighing favorable and unfavorable effects of preventive interventions
- Public health applications
- Designing prevention trials
- Assessing potential absolute risk reduction from preventive interventions
- Implementing "high risk" prevention strategy
- Allocating scarce resources
- Need stronger risk factors

$\xrightarrow{\square}$	Acknowledgements	
官	Jacques Benichou	Sylvan Green
¢	David Byar	John Mulvihill
O	Nilanjan Chatterjee	Ju-Hyun Park
O	Jinbo Chen	David Pee
O	Joe Costantino	Elisabetta Petracci
F	Adriano Decarli	Ruth Pfeiffer
\%	Andrew Freedman	Catherine Schairer
	Laurence Freedman	Sholom Wacholder
	Barry Graubard	Lindsey Wu
	NCI-DCEG Intramural Research Program	
nomemic		

Selected References

- Gail et al, JNCI 1999; 91: 1829-1846 (tamoxifen risk/benefit)
- Gail, M.H. and Pfeiffer, R.M. Biostatistics 2005; 6: 227239 (risk distribution and expected loss)
- Gail, M.H. JNCI 2008;100:1037-41 (SNP AUC)
- Gail, M.H. JNCI 2009;101:959-963 (SNP value in applications)
- Gail, M.H., Stat. \& Its Interface, 2009;2:117121(resource allocation)
- Park et al, JCO 2012; 30: 2157-62 ("foreseeable SNPs")
- Petracci, E. et al, JNCI 2011;103:1-12
- Rose, G. The strategy of preventive medicine, Oxford University Press, 1992
- Wu et al, AIM 2012; 157: 597

Additional References on SNPs for Breast Cancer Risk Models

- Pharoah et al Nature Genetics 2002;31:33-36
- Pharoah et al NEJM 2008;358:2796-2803
- Wacholder et al NEJM 2010;362:986-93
- Park et al Nature Genetics 2010;42:570575

Relative Risk for Breast Cancer

 age 40Menarche age 14
Nulliparous
No biopsies
Mother had breast cancer
baseline risk increased risk baseline risk increased risk

Relative risk $=2.76$ compared to a 40 year old woman with all risk factors at baseline.

Strong Breast Cancer Risk Factors		
Factor	Comparison	Relative Risk
Age 70-74	$25-29$	56
BRCA1	No mutation	$2.3-24$
BRCA2	No Mutation	$4 ; 12-18$
Chest radiation (>40 Gy)	No chest radiation	6
Contralateral breast cancer Western Country \% Mammographic density $>45 \%$	None	Rural China
	$<5 \%$	5

Moderately Strong Risk Factors

Factor	Comparison	Relative Risk
Affected $1^{\text {st }}$ degree relatives		
1	None	1.4-3
2 or more	None	2.2-5
1 at age <40	1 at age ≥ 60	1.3-2.8
Biopsies		
Non-proliferative	None	1.5
Proliferative	None	2
Atypical hyperplasia	None	2-4
HRT for 5 y	None	1.3-2
Age at first birth $\geq 30 y$	<20y	1.8

Weak Risk Factors

Factor	Comparison	Relative Risk
Age at menarche $<12 \mathrm{y}$	$\geq 14 \mathrm{y}$	1.2
Age at menopause 55 y	50 y	1.15
BMI (kg/m²)		
>30, post-menopausal >30, pre-menopausal	<21	1.3
Ethanol, 1-2 drinks/d	<21	0.6
Adverse SNP in FGFR2	None	1.13

Some Choices in Risk Modeling

- Genetic model versus empirical model
- Choice of risk factors
- Detailed family history
- Reproductive history (e.g. age at first live birth)
- Medical history (e.g. biopsies, mammographic density)
- Data sources and "piecing together" the model
- Target population: e.g. general population in UK or in US; or high risk clinic

Genetically-based Models

- Autosomal dominant
- Use extensive family history and BRCA1/2 data
- BRCAPRO (Berry et al, JNCI 1997)
- Claus Model (Claus et al, Cancer,1994)
- Autosomal dominant \& residual familial effects
- BOADICEA, Antoniou et al, BJC 2008
- IBIS, Tyrer, Duffy and Cuzick, Stat Med 2005

This model includes other factors such as LCIS, age at first live birth.

NCl's Breast Cancer Risk Assessment Tool, BCRAT ("Gail Model")

- Relative risks from Breast Cancer Detection Demonstration Project (BCDDP)
- Incorporates ethnicity-specific SEER data
- Risk factors
- Age
- Age at menarche
- Age at first live birth
- Number of biopsies (and whether atypical hyperplasia is present)
- Number affected mother or sisters

Percentage of 40-49 year old women with breast cancer risk greater than a 50-year old woman without risk factors

Unpublished data related to Wu, Graubard, Gail, AIM 2012

Summary for Tamoxifen

- Young women at high risk stand to benefit most
- Women without uterus have more favorable risk benefit ratio
- There is no single risk level (e.g. 1.67\%) that applies to all women. Decision depends on age and risks of other outcomes.

Benefit/risk indices for tamoxifen and raloxifene for white non-Hispanic women without a uterus

5-year risk	Tamoxifen			Raloxifene			Strong evidence of benefits outweighing risks
	50-59	60-69	70-79	50-59	60-69	70-79	
1.5	3	-53	-93	27	2	-4	
2.0	31	-26	-66	49	23	18	
2.5	57	2	-39	71	45	40	
3.0	84	29	-12	92	67	62	Moderate evidence of benefits outweighing risksBenefits do not outweigh risks
3.5	111	56	15	114	88	82	
4.0	138	83	42	134	109	104	
4.5	164	109	69	156	131	126	
5.0	191	136	96	178	152	147	
5.5	218	163	121	199	173	168	
6.0	244	189	148	220	195	190	
6.5	270	215	175	242	216	210	
7.0	297	242	201	262	237	232	
5-year projected risk of IBC is $\geq 1.67 \%$.	Using BCPT data and WHI baseline rates			Combining RR from BCPT and STAR using WHI baseline rates			

Freedman A N et al. JCO 2011;29:2327-2333

Calibration of BCRAT in the Breast Cancer

 Prevention Trial (Costantino et al, JNCI 1999)| Age
 Group | $\#$
 women | O | E | E/O |
| :--- | :--- | :--- | :--- | :--- |
| $<=49$ | 2332 | 60 | 55.9 | 0.9 |
| $50-59$ | 1807 | 43 | 48.4 | 1.1 |
| $>=60$ | 1830 | 52 | 54.7 | 1.1 |
| All
 ages | 5969 | 155 | 159.0 | 1.0 |

Model Validation

- Use independent cohort data to validate
- Calibration
- Does the model correctly predict the number of cancers that develop?
- Discriminatory accuracy
- AUC= the probability that a randomly selected case will have a larger predicted risk than a randomly selected control

Model Validation

- Use independent cohort data to validate
- Calibration
- Does the model correctly predict the number of cancers that develop?
- Discriminatory accuracy
- AUC= the probability that a randomly selected case will have a larger predicted risk than a randomly selected control

Designing Prevention Trials

- Statistical power
- Depends on the number of events
- Number of events is proportional to average absolute risk of trial participants
- Eligibility criteria
- Select subjects who stand to benefit from intervention
- Increase efficiency of trial by including high risk subjects
- Examples: BCPT (P-1) Trial, STAR Trial

Usefulness of SNPs for Breast Cancer Risk Models

- Increase discriminatory accuracy (AUC)?
- In public health applications?
- Selected references
- Gail and Pfeiffer, Biostatistics, 2005
- Gail, JNCI 2008, 2009
- Wacholder et al, NEJM 2010
- Park et al, JCO, 2012

The Strategy of Preventive Medicine ${ }^{1}$

- The population strategy of prevention
- The "high-risk" strategy
${ }^{1}$ Geoffrey Rose, Oxford University Press, 1992

Absolute ("Crude") and "Pure" Risk in 1000 60-Year Old Women

Age at Start of Interval	\# At Risk	\# Incident Breast Cancer	\# Deaths from Other Causes
60	1000	17	44
65	939	20	63
70	856	22	89
75	745	\ldots.	\ldots.

Absolute risk of breast cancer to age $75=$ (17+20+22)/1000 = 5.9\%
"Pure" risk = 1- (1-17/1000)(1-20/939)(1-22/856)

$$
=6.3 \%
$$

Absolute Risk Calculation for Woman with Risk Factors X

$R(a, \tau, x)=$

$\int_{a}^{a+\tau} h_{1}(t) r r(t, x) \exp \left[-\int_{a}^{t}\left\{h_{1}(u) r r(u, x)+h_{2}(u)\right\} d u\right] d t$
$h_{1}(t)$ is baseline hazard of breast cancer incidence
$h_{2}(t)$ is mortality hazard from competing risks
$\operatorname{rr}(\mathrm{t} ; \mathrm{x})=\exp \left\{\cos ^{\top} \mathrm{x}(\mathrm{t})\right\}$ is relative risk of breast cancer for covariates $\mathrm{x}(\mathrm{t})$

Factors Affecting Absolute Breast Cancer Risk

- Factors that increase absolute risk
- Increasing the risk projection interval
- Increased age at the beginning of the projection interval (usually)
- Having multiple or strong risk factors for breast cancer
- Factors that decreases absolute risk
- Mortality from non-breast cancer causes

BCRAT for Ethnic/Racial Groups

- Special models have been developed for African-American (JNCI, 2007) and AsianAmerican (JNCI, 2011) women
- Work needed for Hispanic women and other subgroups
- BCRAT calibrates to SEER data for subgroups

Individual Breast Cancer Risk Projections

Current age (20-80): 40
Upper age limit (20-80): 50
Age at menarche: 12
Age at first live birth (0 if no live birth): 0
Number of previous breast biopsies: 1
At least one biopsy with hyperplasia (y:yes, n:no, u:unknown): u
Number of first degree relatives (mother or sister(s)) with breast cancer: 0
Absolute risk $=3.6 \%$ with 95% CI $=(3.0 \%, 4.3 \%)$

Model with Perfect Discriminatory Accuracy

- Treat only the 246.6 women destined to get breast cancer
- Breast cancers $\quad 246.6 \times .51=125.8$
- Net adverse effects $(55.9+326.4+174.9+150.5) \times 246.6 / 10^{5}=1.7$
- Events among those not destined to get breast cancer and therefore not treated (589.6-246.6)x\{(100,000-246.6)/105\}= 342.2
- Grand total 469.7

Threshold Risk r* for Optimal Decision

Expected net benefit from tamoxifen for woman with BC risk r
$r(1-0.51)+101.6(1-0.55)+81.4(1-4.01)+110.0(1-1.59)+50.0(1-3.01)$
$=0.49 r-364.7$.

Expected net benefit positive if $r>364.7 / 0.49=774.3 \equiv r^{*}$

Only give tamoxifen if $r>774.3 / 10^{5}$. This is a "high-risk" strategy, because only 1% of women aged 50-59 have risks this high.

Summary (Continued)

- Public health applications

- Designing Prevention Trials
- Assessing absolute risk reduction from prevention
- To implement "high risk" prevention strategy
- Find safer interventions that can be used broadly
- Increase discriminatory accuracy
- Model risks of the several health outcomes
- Allocating scarce resources
- Cost of risk assessment should be small
- Improvements from SNPs small in these applications. Allocating scarce resources

Women in Forties with Absolute Risk of a 50 -Year Old Woman

- Consider screening mammography because these women have nearly the same prevalence of detectable cancer and intervention effect as the 50 -year old woman (Gail and Rimer, JCO,1998)
- 74% of white women in 40 's have at least the risk of 50 -year old woman with no risk factors (Wu, Graubard, Gail, AIM, 2012)
- "Tipping the Balance" (van Ravesteyn et al, AIM 2012)

Mammographic Screening of a Population under Cost Constraints

- Screening reduces the number of deaths from $N \mu$ to $N \mu(1-\rho)$, a reduction of $N \mu \rho$ deaths
- We take as the unit of cost, the total cost required to screen the entire population, $\mathrm{NC}_{\mathrm{S}}=1$. The fraction of this total cost that is available for the screening program is $\mathrm{h} \leq 1$.
- We perform a risk assessment on members of the population to decide who should get screening. Risk assessment costs
$C_{R}=k C_{S}$, where k is the cost ratio of risk assessment to screening.

Using Risk Models to Allocate Mammograms under Cost Constraints

- Perform a risk assessment
- Allocate mammograms to those with high risks
- Optimal strategy
- h is the fraction of needed money available
$-k$ is the cost ratio for risk assessment:
- g is proportion given risk assessment
- p is proportion assessed who are given mammograms
$-m$ is proportion given mammogram at random among those without risk assessment

Fraction of Maximal Attainable Lives Saved, B, versus Resources, h

B

h
Lives Saved
$N \mu-N g \int_{0}^{\xi_{1-p}} r d F(r)-N g(1-\rho) \int_{\xi_{1-p}}^{1} r d F(r)$
$-N(1-g) \mu m(1-\rho)-N(1-g)(1-m) \mu$
$=N \mu \rho[g\{1-L(1-p)\}+(1-g) m]$
where $\xi_{1-p}=F^{-1}(1-p)$.
Fraction of the maximum possible lives saved
$B=g\{1-L(1-p)\}+(1-g) m$

Goal

Maximize the proportion of lives saved, compared to giving all women mammograms, $g\{1-L(1-p)\}+(1-g) m$, subject to cost constraints
$g k+g p+(1-g) m \leq h$

Four Basic Strategies

- Assess risk in all and screen a top proportion p of those assessed until the remaining money is used. ($g=1, p>0, m=0$)
- Assess risk in a fraction $\mathrm{g}<1$ and use all the remaining money to screen a top proportion p of those assessed. ($0<\mathrm{g}<1, \mathrm{p}>0, \mathrm{~m}=0$)
- Assess risk in a fraction $g<1$, screen a top proportion p of those assessed and a random sample of a proportion $m>0$ of the un-assessed. ($0<\mathrm{g}<1, \mathrm{p}>0, \mathrm{~m}>0$)
- Screen as many as possible at random with no risk assessment. ($\mathrm{g}=0, \mathrm{~m}>0$)

Optimal Strategy is: (1) $g=1$ (Black); (2) $0<g<1, m=0$ (Dark Grey); (3) $0<g<1, m>0$ (Light Grey); or (4) $g=0$ (White).

$\begin{array}{ll}\text { Allocating Mammograms When Only } \\ \text { Enough Money for Half the Population }\end{array}$		
Risk	$\begin{array}{l}\text { Proportion of lives } \\ \text { assessment }\end{array}$	$\begin{array}{c}\text { \% Improvement } \\ \text { saved compared to } \\ \text { giving mammograms } \\ \text { to all women }\end{array}$
Norsus no risk		
assessment		

Allocating Mammograms When Only Enough Money for Half the Population		
Risk assessment	Proportion of lives saved compared to giving mammograms to all women	\% Improvement versus no risk assessment
None	0.500	
BCRAT ${ }^{\text {a }}$	0.632	26.4\%
BCRATplus7SNPs	NPs ${ }^{\text {b }} 0.667$	33.4\%
${ }^{\mathrm{a}}$ AUC=0.607; ${ }^{\text {b }}$ AUC $=0.632 ; \mathrm{k}=0.02$		
Gail, Statistics and Its Interface, 2009		

Key Role of Distribution of Risk, $F(r)$, in the Population

$R(x)$ is risk for person with covariates, x

$$
F(r)=P(R \leq r)=\int_{x: R(x) \leq r} d F_{X}(x)
$$

From $F(r)$, compute
Distribution of risk in cases and in non-cases Functionals of F like AUC
Expected losses for decision-making
References
Gail \& Pfeiffer, Biostatistics 2005;6:227-239
Gail, JNCI 2008;100:1037-1041
Gail, JNCI 2009;101:959-963

Distributions of risk in cases and controls and the Lorenz curve

Distribution G of risk in cases
$\mu=\int_{0}^{1} r d F(r)=P(Y=1)$
$G(r)=P(R \leq r \mid Y=1)=\frac{1}{\mu} \int_{0}^{r} u d F(u)$
Lorenz curve of F is $L(p)=\mu^{-1} \int_{0}^{F^{-1}(p)} r d F(r)=G\left(F^{-1}(p)\right)$
$F_{\text {control }}(r)=P(R \leq r \mid Y=0)=\frac{1}{1-\mu} \int_{0}^{r}(1-u) d F(u)$

Key Assumptions to Compute F

- Hardy-Weinberg equilibrium
- Linkage equilibrium across SNPs

$$
P(\mathbf{X})=\prod_{i=1}^{\prime} p_{i}\left(X_{i}\right)
$$

- Additive effects of disease alleles
- Odds ratios multiply across SNPs

$$
r r(\mathbf{X})=\prod_{i=1}\left(O R_{i}\right)^{x_{i}}
$$

- SNP ORs multiply BCRAT ORs
- SNPs independent of factors in BCRAT

ROC-Type Curves to Assess Discriminatory Accuracy of Risk Models

Uses of Absolute Risk for the Individual Patient

- General perspective in counseling
- Making clinical decisions for preventive interventions with risks and benefits
- Clinical management after diagnosis (prognostic risk models)

Individual Breast Cancer Risk Projections

Current age (20-80): 40
Upper age limit (20-80): 50
Age at menarche: 12
Age at first live birth (0 if no live birth): 0
Number of previous breast biopsies: 1
At least one biopsy with hyperplasia (y:yes, n:no, u:unknown): u

Number of first degree relatives (mother or sister(s)) with breast cancer: 0

Absolute risk $=3.6 \%$ with $95 \% \mathrm{CI}=(3.0 \%, 4.3 \%)$

Preventive Action Applied Throughout the Population

- Must be very safe
- Usually has the greatest potential for disease prevention
- Examples
- Reduce environmental or occupational exposure
- Behavioral change: e.g. more exercise or decreased alcohol
- Take an hypothetical safe cancer preventive agent

Preventive Action Applied To High Risk Subgroup

- Useful if intervention poses adverse side effects or risks
- Useful if intervention is too costly for widespread use
- Limited potential for disease prevention
- Examples
- Tamoxifen to prevent breast cancer
- Oophorectomy and/or prophylactic mastectomy
-MRI screening

Enhancing Effectiveness of High Risk Strategy

- Increase discriminatory accuracy of risk model to concentrate most of the cases in a small high risk group
- Find interventions with less toxicity that can be applied to a larger high risk subgroup (e.g. raloxifene, aromatase inhibitors?) (Cuzick, Breast Cancer 2008)
\% of general population aged 50-59

Other Breast Cancer Risk Models

- Based on detailed family history
- Rare autosomal dominant transmission only
- Claus (Cancer,1994)
- BRACAPRO (can incorporate BRCA genotype)

Berry, JNCI 1997

- Rare autosomal dominant plus residual familial aggregation
- BOADICEA (polygenic, can incorporate BRCA genotype) Antoniou BMJ 2004,2008
- Tyrer, Duff, Cuzick (common dominant and nongenetic risk factors) Stat Med 2004

Other models (continued)

- Family history plus other factors
- Rosner (detailed reproductive history) JNCI 1996
- Mammographic density
- Chen (BCRAT risk factors) JNCI 2006
- Barlow (BI-RADS, fam. Hx, biops) JNCI 2006
- Tice (BI-RADS, fam. Hx, race, biops) Ann Int Med 2008
- SNPs plus BCRAT

Gail JNCI 2008,2009; Pharoah NEJM 2008

- Biopsy Histopathology

Hartmann, JCO 2007

Distribution of Risk in Women aged 50-59 years

Note that only 1.0% of women in this age group satisfy BCRAT > r*.

Some standard criteria for evaluating the performance of risk models

- Calibration: Are risk estimates unbiased?
- Discrimination: How different are the distributions of risk among individuals who do and do not develop the disease (concordance or AUC)?
- Accuracy: How well does model categorize individuals (PPV, NPV, Proportion Correctly Classified)?

Modest Discriminatory Power

Rockhill et al., JNCI 2000

Distribution of breast cancer risk among cases and controls derived from National Health Interview Survey Data

Comments on Area Under ROC (AUC)

- Can be estimated from case-control data
- Hard to increase
- Incorporation of mammographic density, a strong risk factor, only increases from e.g. 0.60 to 0.66 for 60-64 yrs women (Chen, ... Gail, submitted)
- Comparable to AUC for age-specific AUC for cardiovascular risk models

Can a model with modest discriminatory value be useful for screening? For deciding whether or not to intervene?

$$
\begin{aligned}
& \begin{array}{l}
\text { Sensitivity and specificity of decision } \\
\text { rule } \delta=1 \text { if } r \geq \mathrm{r}^{*} \text { and } \delta=0 \text { otherwise }
\end{array} \\
& \begin{aligned}
\operatorname{sens}\left(\mathrm{r}^{*}\right) & =P(\delta=1 \mid Y=1)=P\left(r \geq \mathrm{r}^{*} \mid Y=1\right) \\
& =1-\mathrm{F}_{\text {case }}\left(\mathrm{r}^{*}\right)
\end{aligned} \\
& \begin{aligned}
\operatorname{spec}\left(\mathrm{r}^{*}\right) & =P(\delta=0 \mid Y=0)=P\left(r<\mathrm{r}^{*} \mid Y=0\right) \\
& =\mathrm{F}_{\text {control }}\left(\mathrm{r}^{*}-\right)
\end{aligned}
\end{aligned}
$$

ROCs for various risk factor odds ratios. From Pepe et al. AJE 2004

Model Assessment Based on Population of N Subjects

- $Y_{i}=1$ if cancer develops in time specified interval, 0 otherwise, $i=1,2, \ldots \mathrm{~N}$
- X_{i} are covariates for subject i
- $r\left(X_{i}\right)$ is previously developed absolute risk model designed to estimate $P\left(Y_{i}=1\right)$
- π_{i} is the true $P\left(Y_{i}=1\right)$

Gail and Pfeiffer, Biostatistics, 2005

Assessing Model Calibration

Goodness-of-fit criteria based on comparing observed (O) with expected (E) number of events overall and in subgroups A_{1}, A_{2}, \ldots of the population

$$
\begin{aligned}
O_{k} & =\sum_{i=1}^{N} Y_{i} I\left(X_{i} \in A_{k}\right) \\
E_{k} & =\sum_{i=1}^{N} r\left(X_{i}\right) I\left(X_{i} \in A_{k}\right)
\end{aligned}
$$

If r is well calibrated, O_{k} has mean E_{k}

Specific Loss Function-Based Approach to Model Assessment

Two applications:
-Screening
-Weighing risks and benefits of an intervention

Gail and Pfeiffer, Biostatistics 2005

Expected Loss

$$
\begin{aligned}
& E L=C_{11} P(Y=1, \delta=1)+C_{01} P(Y=1, \delta=0) \\
& +C_{10} P(Y=0, \delta=1)+C_{00} P(Y=0, \delta=0) \\
& =C_{11} \int_{r^{*}}^{1} r d F(r)+C_{01} \int_{0}^{r^{*}} r d F(r)+C_{10} \int_{r^{*}}^{1}(1-r) d F(r)
\end{aligned}
$$

Decision to Intervene

$\delta=1$ if decide to intervene, $\delta=0$ otherwise.
"Intervention" changes distribution of health outcomes.

Consider two outcomes for tamoxifen intervention:
$Y_{1}=$ breast cancer
$\mathrm{Y}_{2}=$ stroke
$P\left(Y_{1}=i, Y_{2}=j \mid \delta=0\right) \neq P\left(Y_{1}=i, Y_{2}=j \mid \delta=1\right)$

Example: Breast Cancer, Stroke and Intervention by Tamoxifen

STROKE: No covariate model for stroke risk; use average age-specific risk s
$r_{001}(x)=\mathrm{s}, r_{101}(x)=1.6 s$

BREAST CANCER:

$r_{010}(x)=$ Gail model estimate for breast cancer
$r_{110}(x)=0.5 r_{010}(x)$
$r_{011}(x)=r_{111}(x)=0$

Assessing Model Calibration

The model $r(x)$ is perfectly calibrated (unbiased) if for each x

$$
r(x)=E(\pi \mid x)=\int \pi d G(\pi \mid x)
$$

Then
$\int_{0}^{1} r d F(r)=\int_{x} E(\pi \mid x) d G_{x}(x)=E(\pi)=P(Y=1)$
Unbiased (well calibrated) in the whole population

$$
\frac{1}{N} \sum_{i=1}^{N} Y_{i} \approx \int_{0}^{1} r d F(r)=\mu
$$

Extend Notation to Intervention Setting

True event probabilities for bivariate outcomes for $\delta=0,1$

$$
\begin{aligned}
\pi_{\delta i}=\{ & P_{\delta}\left(Y_{\delta 1 i}=1, Y_{\delta 2 i}=1\right), P_{\delta}\left(Y_{\delta 1 i}=1, Y_{\delta 2 i}=0\right) \\
& \left.P_{\delta}\left(Y_{\delta 1 i}=0, Y_{\delta 2 i}=1\right), P_{\delta}\left(Y_{\delta 1 i}=0, Y_{\delta 2 i}=0\right)\right\}^{T}
\end{aligned}
$$

Risk models to predict quadrinomial outcomes in presence and absence of intervention ($\delta=0,1$)

$$
\left.r_{\delta}(x)=\left\{r_{\delta 11}(x), r_{\delta 10}(x), r_{\delta 01}(x), r_{\delta 00}(x)\right)\right\}^{T}
$$

Measures of Discrimination

- ROC curve (plot of sensitivity against 1specificity)
- Area under the ROC curve (AUC)
- Concordance statistic (Rockhill et al, 2001; Bach et al, 2003)
- ~ (Gini index+1)/2 for rare events
- Partial area under the curve (Pepe, 2003; Dodd\&Pepe, 2003)

Assessing Model Accuracy

For clinical decision making a decision rule is needed to classify subjects

$$
\delta_{i}=\left\{\begin{array}{lc}
1, & \text { if } r \geq r^{*} \\
0, & \text { otherwise }
\end{array}\right.
$$

for some threshold r^{*}

Accuracy Criteria

- Positive predictive value
- Negative predictive value
- Weighted combinations of both, eg
$P($ correct decision $)=P\left(r \geq \geq^{*}\right) P\left(Y=1 \mid r \geq r^{*}\right)+$ $P\left(r<r^{*}\right) P\left(Y=0 \mid r<r^{*}\right)$
Depend on sensitivity, specificity, and $P(Y=1)$
Cannot be estimated from samples of cases and controls alone

An Alternative Approach to Incorporate Covariates*

- Model $\mathrm{F}_{1}(\mathrm{t} ; \mathrm{X})=(\mathrm{T} \leq \mathrm{t}$ from cause $1 \mid \mathrm{X})$ directly via $g\left\{F_{1}(t ; X)\right\}=v_{0}(t)+X \beta$
- Use counting process methods, but "risk set" at t consists of those who have not failed plus those who failed earlier but not from cause 1
* Fine and Gray, JASA 1999

Fine, JP and Gray RJ, JASA 1999

- $F(t \mid X)=$ absolute risk to age t given X
- $g\{F(t \mid X)\}=h_{0}(t)+X \beta$
- E.g. $g(u)=\log \{-\log (1-u)\}$
- $\lambda=$ hazard $=\{\mathrm{dF}(\mathrm{t} \mid \mathrm{X}) / \mathrm{dtt}\} /(1-\mathrm{F}(\mathrm{t} \mid \mathrm{X}))$
- Issues
- No cause-specific interpretation
- Requires cohort data
- Complex estimation with censoring

Advantages of Cause-Specific Relative Risk Model for Covariates

- Familiar interpretation of cause-specific relative risks
- Standard survival methods for estimation with cohort data
- Possible to use different data sources:
- Relative risks from case-control or case-cohort data
- Baseline hazard $h_{1}(t)$ from SEER data via $h_{1}(t)=h_{1}{ }_{1}(t)\{1-A R(t)\}$,
where $\mathrm{h}^{\star}{ }_{1}(\mathrm{t})$ is the incidence rate in SEER
- For alternative modeling, see Fine and Gray (JASA, 1999)

