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Statistics can be defined as the methods used to assimilate data, so that guidance can be given, and conclusions drawn, in
situations which involve uncertainty. In particular, statistical inference is concerned with drawing conclusions about
particular aspects of a population when that population cannot be studied in full. Uncertainty arises here because the totality
of the information is not available. Instead, to make inferences about the population, it is necessary to rely on a sample of
data which is selected from the population; this sample data may be augmented, in certain circumstances, by auxiliary
information which is obtained independently of the sample data. Clearly, uncertainty lies at the heart of statistics and
statistical inference. This uncertainty is measured by a probability which therefore forms the crux of statistics and must be
properly understood in order to interpret a statistical analysis.
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UNDERSTANDING STATISTICS AND
PROBABILITY

Measuring probability

A probability is a number that takes some value
equal to or between zero and one. If the proba-
bility of the ‘event’ of interest is zero, then the
event cannot occur. So, for example, the proba-
bility of drawing an ‘eleven’ from a pack of cards
is zero because there is no such card. If the prob-
ability of the event of interest is unity, then the
event must occur. Most probabilities lie some-
where between the two extremes; the closer the
probability is to one, the more likely the event,
the closer it is to zero, the less likely the event.

Defining probability

To take a particular example, suppose it is of
interest to determine the probability that a man
has a DMFT of zero (the event of interest). What
is really meant by ‘probability’ in this setting?
There are various ways of understanding a prob-
ability, the three most common being based on
the following interpretations:

1. Frequency. This view of probability, also
called frequentist or empirical probability,
forms the basis for what is termed the
frequentist or classical approach to statistical
inference. The probability is defined only in
situations or ’experiments’ which can (at
least, theoretically) be repeated again and
again in essentially the same circumstances,

under the constraint that the result from any
one experiment is independent of any other.
Therefore, it cannot be applied to a ‘one-off’
event, such as assessing the probability that
Prince Charles will be king. Strictly, although
every event is one-off, many events can be
regarded as similar enough to satisfy the cri-
teria laid down by the frequentist approach.
The frequency definition of probability is
then the proportion of times the event of
interest occurs when the ‘experiment’ is
repeated on many occasions, and is equiva-
lent to a relative frequency. The frequency
definition of probability is easily understood
in the context of coin tossing, when a single
toss of the coin can be regarded as the exper-
iment and obtaining a ‘head’ as the event of
interest. If a fair coin were tossed 1,000,000
times (that is, a large number of times), the
‘frequency’ interpretation of the probability
of a head would be the number of heads
obtained divided by 1,000,000, ie the pro-
portion of heads. In the DMFT example, if
there are 1,000 men in the population, then
each man is regarded as the experiment, and
a DMFT of zero is regarded as the event of
interest. The probability that a man has a
DMEFT of zero is the proportion of the 1,000
men with a DMFT of zero.

Subjective This view of probability, central to
Bayesian inference, is also termed personal-
istic as it expresses the personal degree of
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Classical and
Bayesian analyses £

The classical or
Neyman-Pearson
approach to
statistical analysis
relies on the
frequency interpreta-
tion of probability
whereas the Bayesian
approach relieson a
subjective interpreta-
tion of probability

belief an individual holds that an event will
occur. For example, it may be an individual’s
personal view that a man from a particular
population has a DMFT of zero, that a certain
person has oral cancer, or that a coin will
land on heads when tossed. The subjective
view of probability is based on the individ-
ual’s experiences and his or her ability to
amass and construe information from exter-
nal sources, and may well vary from one
individual to another. It can be applied to
one-off events.

3. Model based. This type of probability,
sometimes termed an a priori probability,
relies on being able to specify all possible
equally likely outcomes of an experiment,
in advance of or even without carrying out
the experiment. So, in the coin tossing
example, there are two equally likely out-
comes, a head and a tail. The probability of
an event which defines a particular out-
come or set of outcomes, if appropriate, is
the number of outcomes which relate to the
event of interest divided by the total num-
ber of outcomes. Thus the probability of a
head (the event of interest) is one divided
by two (the total number of possible out-
comes) which equals 2. If a card were
drawn from a pack of fifty two cards, the a
priori probability of a ‘heart’ would be 13
(the number of hearts in the pack) divided
by 52 (the number of cards), ie V4. Clearly,
only some situations are amenable to this
approach to defining a probability; the
probability of a man having a DMFT of zero
cannot be assessed in this manner. It is
interesting to note that the frequentist
probability of an event tends to coincide
with, or at least tends towards, the
a priori probability when the experiment is
repeated very many times. Thus, if a fair
coin were tossed 10 times, it would not be
surprising if 7 heads were obtained (giving
a frequentist probability of a head as 0.7),
but if the coin were tossed 10,000 times, the
proportion of heads would be expected to
be very close to 0.5.

CONDITIONAL PROBABILITY

There are various rules that can be adopted to
evaluate probabilities of interest. Each will be
illustrated by considering drawing a card or two
cards from a pack.

1. Addition rule. This states that if two events
are mutually exclusive (this means that if
one of the events occurs, the other event
cannot occur), then the probability that
either one occurs is the sum of the individual
probabilities. So for two events, A and B,

Pr(A orB) = Pr(A) + Pr(B)
Thus the probability of drawing either a

heart or a spade from the pack of 52 cards is
Ya +1Ys =12 =0.5.

2. Multiplication rule. This states that if two
events are independent (this means that the
events do not influence each other in any
way), then the probability that both of these
events occur is equal to the product of the
probabilities of each. So,

Pr(A and B) = Pr(A) x Pr(B)

Thus the probability of drawing the king of
hearts is 1/13 x 1/4= 1/52 = 0.019.

If the events are not independent, then a dif-
ferent rule, requiring the understanding of a
conditional probability, has to be adopted.
The conditional probability of an event B,
written Pr(B|A) or Pr(B given A), defines the
probability of B occurring when it is known
that A has already occurred. The rule for
dependent events states that the probability
of both events occurring is equal to the prob-
ability of one times the conditional probabil-
ity of the other. So,

Pr(A and B) = Pr(A) x Pr(B given A)

For example, suppose that two cards are
drawn from the pack and the first is not
replaced before the second is taken. The
probability of both of these cards being clubs
is the product of the probability of the first
being a club (ie 13/52) and the second being a
club, given that the first was a club (ie 12/51),
which is 0.085. Conditional probability plays
an important role in Bayesian statistics.

THE FREQUENTIST PHILOSOPHY

The most common philosophy underlying statis-
tical analysis is the frequentist or classical
approach, often termed the Neyman-Pearson
approach, named after the two statisticians who
were instrumental in developing the early theory
of statistical hypothesis tests. The two features
which characterise the frequentist approach are:

1. All the information which is used to make
inferences about the attributes of interest in
the population is obtained from the sample.

2. The results of the analysis are interpreted in
a framework which relates to the long-term
behaviour of the experiment in assumed
similar circumstances. Thus, the P-value,
which is fundamental to the interpretation of
the results, is strictly (although it is often
misinterpreted) a_frequentist probability.

Suppose a particular parameter, the popula-
tion mean, is relevant to an investigation con-
cerned with comparing the effects of a test and a
control treatment on a response of interest. A
sample of patients is selected and each patient is
randomly allocated to one of the two treatments.
For example, a double blind randomised trial
(Fine et al., 1985)' compared the mean wet
plaque weight of adults’ teeth (collecting the
plaque from 20 teeth per adult) when one group
of adults received an antiseptic mouthwash and
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a second group received its vehicle control, each
‘treatment’ being used twice daily for nine
months and in addition to normal tooth brush-
ing. The null hypothesis, Hy, is that the means
are the same in the two groups in the population.
Using the sample data, a test statistic is evaluat-
ed from which a P-value is determined. The
P-value is NOT the probability that the true dif-
ference in means is zero. Classicists regard the
population attribute (in the above example, the
difference in population means) as fixed, so that
they cannot attach a probability directly to the
attribute. The P-value is the probability of
obtaining a difference between sample means
equal to or more extreme than that observed, if
H, is true. That is, if the experiment were to be
repeated many times, and H, were true, the
observed (or a more extreme) difference in
means would be obtained on 100P% of occa-
sions. In the same vein, the classicist strictly
describes the 95% (say) confidence interval for
the true difference in the two means as that
interval which, if the experiment were to be
repeated on many occasions, would contain the
true difference in means on 95% of occasions.

It should be noted that the classical approach
to hypothesis testing, because it does not allow
a probability to be attached directly to the
hypothesis, H;, dichotomises the results accord-
ing to whether or not they are ‘significant’, typi-
cally if the P-value is less or greater than 0.05.
For this reason, it can be argued that the
approach is not well suited to decision making,
since the P-value does not give an indication of
the extent to which H, is false (eg how different
the means are). If the sample size is large, the
results of a test may be highly significant (ie the
P-value very small) even if there is very little
difference between the treatment means. Alter-
natively, the results may be non-significant (ie
with a large P-value) if the sample size is small
even if there is a large difference between the
treatment means.

THE BAYESIAN PHILOSOPHY

Bayesian statistical methods, developed from the
reasoning adopted by an eighteenth century
clergyman, the Rev. Thomas Bayes, draw a con-
clusion about a population parameter by com-
bining information from the sample with initial
beliefs about the parameter. More explicitly, the
sample data, expressed as a likelihood function,
is used to modify the prior information about the
parameter, expressed as a probability distribu-
tion and derived from objective and/or subjec-
tive sources, to produce what is termed the
posterior distribution for the parameter.

The Bayesian approach is described in detail
in texts such as those by Iversen (1984)? and
Barnett (1999),% and is summarised by Lilford
and Braunholtz (1996).% It is characterised by the
following features which differ quite markedly
from those of the classical approach:

1. It incorporates information which is extra-
neous to the sample data into the calcula-

tions. This is the prior information about the
parameter of interest.

2. It assumes that the parameter of interest,
rather than being fixed, has a probability
distribution. Initially, this is the prior distri-
bution but it is updated, using the sample
data, to form the posterior distribution. A
probability distribution attaches a probabili-
ty to every possible value of the quantity of
interest. This means that, in a Bayesian
analysis, it is possible to evaluate the proba-
bility that a parameter has a particular value
and, consequently, the probability that a null
hypothesis about the parameter is true. It is
this probability in which most people are
interested - the chance that null hypothesis is
true - rather than the probability associated
with the classical analysis, namely the P-
value. Furthermore, a Bayesian can truly
interpret a 95% confidence interval as the
range of values which contains the true pop-
ulation parameter with 95% certainty, the
interpretation often falsely adopted by classi-
cists. The Bayesian point estimate of the
parameter is usually taken to be the mode of
the posterior distribution, ie its most likely
value.

3. It relies on the subjective interpretation of a
probability, reflecting a personal degree of
belief in an outcome, as the choice of prior
depends on the investigator and it is not
interpreted in a frequentist manner. This per-
sonal belief in a parameter value or the truth
of the null hypothesis will probably change
as further evidence becomes available. The
Bayesian accommodates this reasoning by
using the sample data to update the prior
into the posterior. Continual updating can be
achieved by using this posterior as the prior
for the next Bayesian analysis.

The likelihood

Central to the Bayesian philosophy is the likeli-
hood, the probability of getting the data observed
in the sample when the parameter of interest
takes a particular value (eg the value when H is
true). The likelihood for the sample data will be
different for different hypotheses about a partic-
ular parameter (or parameter specification such
as the difference in means), ie for different values
of this parameter. It is possible to consider all
possible parameter values, and calculate the like-
lihood in each case, ie the probability of getting
the data actually observed in each instance. This
can be achieved if the parameter is assumed to
follow a known probability distribution, such as
the discrete Binomial or the continuous Normal
distributions. If these probabilities are plotted
against the parameter values, then the resulting
plot is called the likelihood function.

Bayes theorem

Bayes theorem provides the means of updating
the prior probability using sample data, and is
the basic tool of Bayesian analysis. Suppose a
null hypothesis, H,, about a particular parameter

Bayes theorem

| 2

Bayes theorem
provides a theoretical
framework which
enables an initial
pre-experiment
assessment of the
probability of some
event to be revised by
combining the initial
assessment with
information obtained
from experimental
data
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Prior information

| 2

The experimental
information
concerning some
event can be so
overwhelming that it
swamps the prior or
pre-experiment
information.

Then the prior hardly
influences the
posterior or
post-experiment
probability of the
event.

specification is to be tested, say that the differ-
ence in the mean responses between test and
control treatments is zero in the population (eg
that the difference between the mean plaque
weights from adults’ teeth after using either a
mouthwash or a vehicle control for 9 months is
zero). If the prior probability that Hy is true is
Pr(H,), and the likelihood of getting the data
when H,, is true is Pr(dataIHO] , where the vertical
line is read as ‘given’, then Bayes theorem states
that the posterior probability that H is true is:

Pr{H,|data) e Pr(data|Hg) Pr(Hg),

ie the posterior probability is proportional to the
product of the likelihood and the prior probabili-
ty. Both the posterior probability and the likeli-
hood are conditional probabilities. Bayes theo-
rem converts the unconditional prior probability
into a conditional posterior probability.

In fact, Bayes theorem states that:

Pr(dataIHQ]Pr(HQ)

Pr(H,|data)= Pridata)

where the denominator, called the normalising
constant, is a factor which makes the total prob-
ability equal to one when all possible hypotheses
are considered. When there are only discrete
possibilities for the parameter values, say the set
Hy, H,, H,, ..., H, then the denominator becomes
2Pr{data|H)Pr(H) where the sum extends over
all possible values for i, namely i =0, 1, 2, ..., k.

When the parameter can take any value with-
in a range of continuous values, then both the
prior and posterior probabilities are replaced by
probability densities, shown as smooth curves
when plotted, with the area under each curve
being unity (this corresponds to the sum of all
probabilities being one). The posterior density
function can then be used to evaluate the proba-
bility that the null hypothesis is true (ie that the
parameter takes a particular value, say, zero) and
also that the parameter takes values within a
range such as between one and two.

The choice of prior

One of the factors which has limited the use of
Bayesian analysis is the perception that its
results are too dependent on an arbitrary factor,
namely the choice of prior. In fact, where there is
no information from the prior (it is a non-
informative prior when all possible values for
the parameter of interest are equally likely), the
prior does not influence the posterior distribu-
tion, and the posterior and the likelihood will be
proportional. At the other extreme, where the
prior provides strong information (for example,
when the prior suggests that there is only one
possible value for the parameter), the likelihood
will not influence the posterior and the posterior
will be identical to the prior. Close to these two
extremes, there are situations of vague and sub-
stantial prior knowledge. In the former case, the
information in the sample data swamps the prior
information so that the posterior and likelihood
are virtually equal; in the latter case, the posteri-

or departs substantially from the likelihood. To
further assuage those in doubt, it is possible to
assess how robust conclusions are to changes in
the prior distribution by performing a sensitivity
analysis. Different priors, obtained perhaps from
a number of clinicians, lead to a series of poste-
rior distributions. In turn, these may or may not
lead to different interpretations of the results, for
example, about the extent to which it is believed
a novel treatment may be beneficial when com-
pared with an existing therapy.

There are a number of possible types of prior.
These include:

1. Clinical priors — these express reasonable
opinions held by individuals (perhaps clini-
cians who will participate in the trial) or
derived from published material (such as a
meta-analysis of similar studies).

2. Reference priors — such priors represent the
weakest information (when all possible
parameter values are equally likely, ie there
is prior ignorance), and each is usually used
as a baseline against which other priors can
be compared.

3. Sceptical priors — these priors work on the
basis that the effect of interest, such as the
treatment effect measured by the difference
in treatment means, is close to zero. In such
situations, the investigator is sceptical about
the effect of treatment, and wants to know
the effect on the posterior of the worst plau-
sible outcome.

4. Enthusiastic priors — these priors consider
the spectrum of opinions which is diametri-
cally opposed to that contained within the
community of sceptical priors, namely when
the investigator is optimistic about the treat-
ment effect. He or she is interested in the
effect on the posterior of the best plausible
outcome.

It should be noted that sometimes, when the
information extraneous to the sample data is
limited, it is difficult or impossible to specify an
appropriate prior. Then an empirical Bayesian
analysis, in which the observed data is used to
estimate the prior, may be performed instead of a
full Bayesian analysis. Further details may be
obtained from Louis (1991).%

APPLICATIONS OF THE BAYESIAN METHOD

Although the theory of Bayesian statistics has
been around for many years, it has, in the past,
been of limited application. This is because, usu-
ally, it is very difficult, if not impossible, to cal-
culate the posterior distribution analytically.
Instead, simulation techniques, such as Monte
Carlo methods, have had to be used to approxi-
mate the distributions, and these are extremely
computer intensive. However, with the advent of
fast, cheap and powerful computers, and spe-
cialist software (such as: WinBUGS - www.
mrc-bsu.cam.ac.uk/bugs/welcome.shtml), this
difficulty has, to a large extent, been overcome,
and Bayesian methods are becoming more pop-
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ular and finding a wider application. Some
examples are discussed in the following subsec-
tions, more details of which can be obtained in
papers such as those by Berry (1993),° Spiegel-
halter et al. (1994),” Berry and Stangl (1996),8
and Fayers et al. (1997).%

Predictive probabilities

Since the Bayesian approach assumes a proba-
bility distribution for a parameter, it is possible
to calculate predictive probabilities for the
parameter values of future patients, given the
results in the sample. This is impossible in the
classical framework which is concerned with
calculating the probability of the observed data,
given a particular parameter specification. Thus,
in the Bayesian framework, the potential exists
to use the predictive probability, for example, to
decide whether or not a specific future patient
will respond to treatment, to predict the required
drug dose for an individual, or to decide whether
a clinical trial should continue.

Diagnostic and screening tests
One of the easiest applications of the Bayesian
approach, and one that was applied early on in
the development of the method, is to the prob-
lem of diagnosis and screening (covered in an
earlier paper, Diagnostic Tests for Oral Condi-
tions, in this series). Although a dentist may rely
on a formal test to diagnose a particular condi-
tion in a patient (oral cancer, say), it would be
most unusual if the dentist does not have some
preconceived idea of whether or not the patient
is diseased. This subjective view might be based
on the patient’s clinical history and the presence
of signs and symptoms (for example, a pre-can-
cerous lesion such as leucoplakia, erythroplakia,
chronic mucocutaneous candidiasis, oral
submucous fibrosis, syphilitic glossitis, or
sideropenic dysphagia), or, if nothing is known
about the patient, may simply be the prevalence
of the condition in the population. It seems sen-
sible to include such information in the diagno-
sis process, and this can be achieved fairly easily
in a Bayesian framework. The preconceived idea
is the prior (or pre-test) probability, the result of
the diagnostic test (which may be positive or
negative) determines the likelihood and Bayes
theorem combines the two appropriately to pro-
duce the posterior (or post-test) probability that
the patient has the condition. Rather than
labouring through the mechanical process of
applying Bayes theorem, a simple approach is to
use Fagan’s nomogram (Fig. 1).1° The posterior
probability is found by connecting the pre-test
probability to the likelihood ratio, extending the
line and noting where it cuts the post-test axis.
Consider the example which was used in
Part 5 — Diagnostic Tests for Oral Conditions. A
17-month longitudinal study (Kingman et al.,
1988)!! of 541 US adolescents initially aged 10-
15 years was conducted with a view to using the
child’s baseline level of lactobacilli in saliva as a
screening test for children at high risk of devel-
oping caries. A bacterial level of lactobacilli
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>10° was regarded as a positive test result and
this was compared with the child’s caries incre-
ment after 17 months, where at least three new
lesions in the period were recorded as a positive
disease result. Early detection of these high-risk
children allows special preventative pro-
grammes to be instituted for them, and this is
important both for the individual child and for
society, as the gain can be expressed in terms of
dental health and economy. Suppose that it is of
interest to determine whether a particular child
from the population under investigation is likely
to be at high risk of developing caries. It is
known that the prevalence of high risk children
(in terms of caries development) in this popula-
tion is about 21%, and the sensitivity and the
specificity of the test are 15% and 93%, respec-
tively. Thus the pre-test probability of the child
being high risk can be taken as 0.21 (or 21%),
and the likelihood ratio of a positive test result,
which is the sensitivity divided by 100 minus
the specificity (Petrie and Sabin, 2000),'? is
15/(100-93) = 2.14. Using Fagan’s nomogram
and connecting 21% on the left hand axis to
2.14 on the middle axis and extending the line

Fig. 1 Fagan's nomogram for

interpreting a diagnostic test result.
Adapted from Sachett DL, Richardson

WS, Rosenberg W, Haynes RB.
Evidence-based Medicine: How to

Practice and Teach EBM (1997) by
permission of the publisher Churchill

Livingstone
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Fig. 2 Two examples of the use of
Fagan's nomogram shown by the
drawn red lines (a reduced section of
Fig. 1 is shown)
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gives a value on the right hand axis of about
3500 so that the post-test or posterior probability
is approximately equal to 0.35 (Fig. 2). On this
basis, it is probably worth investigating the child
further (eg by using additional test such as that
based on the level of mutans streptococci in sali-
va). If, on the other hand, the child comes from a
different population in which the prevalence of
high risk children is only 1.5%, then the line
connecting 1.5% on the left hand axis to 2.14 on
the middle axis cuts the right hand axis at about
3% so that the post-test probability comes to
approximately 0.03 (Fig. 2). The pre- and post-
test probabilities are both extremely low in this
instance, and the child from this population can
be regarded as being at very low risk of develop-
ing caries, so that no further action needs be
adopted for this child. It may be of interest to
note that, in each case, the Bayesian post-test or
posterior probability determined using Fagan'’s
nomogram corresponds (after allowing for
rounding errors and the approximations
involved in the use of the nomogram) to the pos-
itive predictive value of the test, evaluated in the
‘diagnostic tests’ paper in this series.

Clinical trials

The Bayesian approach can be used in clinical
trials, both in their design and analysis, when a
decision has to be made, such as whether or not
to admit more patients to a study or to adopt a
new therapy. The process requires an assessment
of the costs and benefits of the consequences
associated with the possible decisions. These
consequences are expressed as utilities, and
should be specified by an appropriate team of
experts (eg dentists, pharmacologists, oncolo-
gists etc) who have to address issues relevant to
the problem. These utilities are then weighted by
the probabilities of the consequences (the pre-
dictive probabilities) to determine the expected

benefits. The decision that maximises the
expected benefit or minimises the maximum
loss is then chosen.

CONCLUSION

The issue of whether or not to adopt a Bayesian
approach to statistical analysis in a given cir-
cumstance remains controversial and one of
personal choice. This paper has attempted to
introduce the concepts and highlight the
advantages and disadvantages of such proce-
dures. Whatever one’s views, however, it
should be recognised that the Bayesian
approach to data analysis is one of the greatest
single developments in statistics since Pear-
son, Fisher, Gosset (Student) and their col-
leagues created the theoretical framework of
the conventional significance test. After
almost a century, and with the advent of pow-
erful computers, the subject ‘statistics’ may be
on the brink of a revolution as important as the
change from Newton to Einstein was for
Physics. In the early years of the twentieth
century there were many sceptics about rela-
tivity and atomic physics just as now there are
many sceptics among statisticians about the
practical usefulness of Bayesian methods.
However, the new millennium is still young
and even if Bayesian methods are accepted
universally, one wonders if the community of
statisticians will be ready for a third revolution
after another century!
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