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@ The rationale underlying the choice of the optimal sample size in a clinical trial

@ An explanation of Type | and Type Il errors in hypothesis testing and their relevance to the
significance level and power of the test

@ Adiscussion of the factors that need to be considered when estimating the optimal sample

@ The use of Altman's nomogram to estimate the required sample sizes of two groups of
observations which are to be compared.
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The principles which underlie a well-designed clinical trial were introduced in a previous paper.! The trial should be controlled
(to ensure that the appropriate comparisons are made), randomised (to avoid allocation bias) and, preferably, blinded (to
obviate assessment bias). However, taken in isolation, these concepts will not necessarily ensure that meaningful conclusions
can be drawn from the study. It is essential that the sample size is large enough to enable the effects of interest to be
estimated precisely, and to detect any real treatment differences.
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SAMPLE SIZE ESTIMATION

‘How large a sample do I need?’ is one of the most
commonly asked questions of a statistician. It is
also one of the hardest questions to answer. The
researcher posing the query usually believes, quite
wrongly, that the statistician can produce a figure,
as if by magic, without any information about the
why’s and wherefore’s of the trial. Unfortunately,
both life and sample size estimation are not so
simple! It is necessary to have some idea of the
results that are expected from the trial, before it
has been conducted, in order to evaluate the actual
sample size required. If the proposed sample size
appears outrageous, it is important to realise that
if the numbers are reduced substantially, it may
not be possible to detect real treatment differ-
ences, even if they exist. At the other extreme, if
more patients than are really needed to compare
treatments are used, the study may fall short of
the ethical prerequisites.

TYPE | AND TYPE Il ERRORS

The fundamental ideas of sample size estimation
are most easily understood in the context of a
trial to compare two arithmetic means using
independent samples. The null hypothesis is that
the true means in the populations from which
the samples are derived are equal. An example is
a clinical trial to compare the cariostatic action
of two toothpastes in children of a given age; the
children are to be randomly allocated the tooth-
pastes and the mean dmfs increment observed
after, say, 2 years will be compared in the two

groups. Alternatively, a study might be designed
to investigate whether the presence of fillings
affects the level of Streptococcus mutans in the
saliva; children recruited to the study will be
divided into two groups not randomly, but
according to the presence or absence of fillings,
and the mean level of S. mutans observed in
samples of saliva taken from the children will be
compared. At the design stage of studies such as
these, it will be necessary to know how many
children to include in each sample.

The decision whether or not to reject the null
hypothesis depends on the magnitude of the
P-value obtained from the test and the cut-off
value for it which determines significance, ie
the significance level. Very often, although not
necessarily, this level is chosen to be 0.05 so
that the null hypothesis is rejected if the P-
value is less than 0.05. If this is so, the result is
said to be statistically significant and it is con-
cluded that there is enough evidence to reject
the null hypothesis. In the examples quoted,
this would imply that there is evidence to sug-
gest that one of the toothpastes is, on average,
more cariostatic than the other, or that, on
average, children with fillings tend to have
higher (or lower) levels of S. mutans than chil-
dren without fillings. Alternatively, if the P-
value is greater than the cut-off level, there is
not enough evidence to reject the null hypothe-
sis, and the observed difference between the
sample means is said to be not statistically sig-
nificant at the chosen level. Note, however, that
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Fig. 1 Altman's nomogram for the
calculation of sample size or power
(extracted from Altman, 1982 How
large a sample? in Statistics in
Practice. Eds S. M. Gore and D. G.
Altman. BMA London. Copyright
BMJ Publishing Group, with
permission.)

Standardized

difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

this does not necessarily imply that the means
in the populations of children are equal, only
that there is insufficient evidence to show that
these means are different.

It must be recognised that coming to either of
these conclusions may or may not be correct.
Rejecting the null hypothesis when it is true
(concluding that there is evidence to show that
the population means differ when, in fact, they
are equal) leads to what is termed a Type | error.
A Type Il error is made when the null hypothesis
is not rejected when it is false, ie when it is con-
cluded that there is insufficient evidence to show
that the population means differ when, in fact,
these means are not equal. Table 1 summarises
the consequences of rejecting and not rejecting
the null hypothesis in the circumstances in
which it is either true or false.

Table 1 Errors in testing the null hypothesis, H,

H, rejected H, not rejected

H, false No error Type Il error

H, true Type | error No error

Clearly both Type I and Type II errors are
undesirable but because they arise as a conse-
quence of sampling, and thus not having all
information from the population available, the
chances of making these errors cannot be
entirely eliminated. The chances (ie probabili-
ties) of making the Type I and Type II errors are
usually denoted by the Greek letters, alpha (&)

Power

—0.995

0.98

0.97

0.96
0.95

0.90

0.85

-10.80
-0.75
-10.70
-10.65
-10.60
—-10.55

-10.50
—-10.45

-10.40
-0.35
-10.30
-0.25
-0.20

-10.15

—10.10

Significance
level

and beta (f), respectively. The aim in designing
a study is to control « and f so that they are
acceptable in the context of the proposed
study. Since they both increase as the sample
size of the study decreases, all other relevant
factors remaining constant, choosing the opti-
mal sample size becomes an integral part of
study design.

The first step is to decide, in advance of col-
lecting the data, on the worst case scenario for
a Type I error. This means choosing the signifi-
cance level of the test, the maximum value of
a, and this is commonly but not necessarily
assigned the value 0.05. Then the probability
of incorrectly rejecting the null hypothesis
cannot exceed 0.05 since H; is not rejected if
P> 0.05. Now, if B is the probability of not
rejecting the null hypothesis when it is false,
then (1-f) is the probability of rejecting it
when it is false. (1-f) is called the power of the
test; it is the probability (often expressed as a
percentage) of correctly concluding that a
treatment difference of a specified size exists.
It is usual to ensure that the study has a high
power, very often in excess of 80%, since there
is no justification for embarking on a study if
it is known in advance that the study has little
chance of detecting a real treatment effect.
Having decided on values for the significance
level and the power of the test, both of which
will be chosen according to the circumstances
of the investigation and the null hypothesis
under test, it is then possible to evaluate the
optimal sample size. However, as indicated in
the following section, other factors apart from
the power and the significance level come into
play in the sample size determination.

ALTMAN'S NOMOGRAM

There are various approaches one can use to
determine the optimal sample size, each incor-
porating the same relevant factors into the cal-
culations. It is usually the specification of
these factors, provided in the bullet points in
the following subsections, which creates the
greatest difficulty in sample size calculations.
Computer programs are available, for example
nQueryAdvisor,> which produce useful tables
and graphs. Specific formulae can be used to
test different hypotheses, but these formulae
tend to be cumbersome and their use time-
consuming. Special tables exist for sample
size calculations (Machin et al., 1997)3 but
the disadvantage to this approach is the need
for a separate table for each type of hypothe-
sis. An alternative, and relatively simple
approach (Altman, 1982),% is to use the nomo-
gram shown in Figure 1.

The right-hand vertical axis of the nomo-
gram represents different power values, rang-
ing from 0.05 to 0.995. The left-hand vertical
axis represents what is termed the standard-
ized difference. This is a ratio which relates
the difference of interest to the standard devi-
ation of the observations. The exact form of
the standardized difference varies according
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to the nature of the variable under investiga-
tion and the specific hypothesis test. There are
two axes within the nomogram, one for a sig-
nificance level of 0.05, the other for 0.01, with
total sample sizes indicated on each. The
nomogram can be used to evaluate the opti-
mal sample size once the power is specified,
the significance level 5% or 1% is chosen, and
the standardized difference is calculated.
Alternatively, the procedure can be reversed,
and the power of the study determined for a
specified sample size. The nomogram is used
under the assumption that equal sized samples
are required, but the procedure can be modi-
fied to accommodate unequal sample sizes.

Sample size calculations for the comparison of
two means from independent samples
Suppose that Altman’s nomogram is to be used
to estimate the optimal sample size for a trial in
which the mean values of a single continuous
variable using independent samples are to be
compared. Typically, the data would be analysed
by performing a two sample t-test, provided the
data in each group are approximately Normally
distributed and the observations in the two
groups are homoscedastic (have the same vari-
ance). But first, it would be necessary to decide
how many observations to include in each
sample. Suppose it were decided to have equal
sample sizes (n) in each group, with a total of N =
2n observations.

In order to use the nomogram, the following
factors must be specified:

e The significance level of the test: it is usually
fixed at 0.05 or, occasionally, at 0.01, and a
two-sided test adopted.

e The power of the test: this is usually required
to be of the order of 80-90%.

e The assumed constant variance (02), of the

observations in each group. Inevitably, it is

difficult to specify the variance of the obser-
vations before the data have been collected.

However, since the variability of the observa-

tions has a direct bearing on sample size, some

estimate of it must be obtained. The more vari-
able the data, the larger the samples that are
required to detect a real treatment difference
of a specified size, if all other factors remain
constant. It may be that a rough estimate of 02
can be obtained using the variance of the
observations from a past experiment that has
been performed which is similar in nature to
that which is now planned. Perhaps the infor-
mation can be found from published papers. If

all else fails, it may be necessary to resort to a

pilot study which is a small investigation, a

small ‘dress rehearsal’ of the planned study,

which may be used to provide an estimate of
the variance.

The clinically important difference in the mean

responses () which is considered to be so clin-

ically or biologically important that if it were
really to exist, it should be detectable by the
proposed study. This is not the same as the dif-

ference in the mean responses which will be
observed. It is a quantity that the investigator,
not the statistician, must specify when he or
she gives consideration to the consequences
which may arise from the investigation. Note
that it is easier to detect a large difference than
a small one, so that the sample size is inversely
proportional to 6.

In this particular problem of determining the
optimal sample size to compare two means using
the two sample t-test, the standardized differ-
ence is 0/, the clinically important difference
divided by the assumed equal standard deviation
of the observations in each group. This is the
quantity on the left-hand vertical axis of the
nomogram.

So, taking the first example in which two
toothpastes are to be compared, suppose the
investigator argues that if one toothpaste were
to reduce the mean dmfs increment by 0.5 com-
pared with the other, this would be regarded as a
worthwhile treatment difference. There is an
implication that if the true difference were less
than 0.5, the investigator would not be too dis-
appointed if the result were not statistically sig-
nificant. The investigator must also obtain an
estimate of the standard deviation, o, of the
dmfs increments. Researching the literature for
other studies of the progression of dental caries
in children, one obtains an estimate of the stan-
dard deviation, say ¢ =1.25 dmfs increment.
Then the standardized difference is /o =
0.5/1.25 = 0.4. If the investigator specifies that
the level of significance to be adopted for the
two-sided test is 0.05 and that the power should
be 90% (often a rather arbitrary decision), the
nomogram can be used to determine the total
number of children required in the study. The
line produced by connecting (using a ruler) the
value of 0.4 for the standardized difference to
the power value of 0.90 cuts the axis for a signif-
icance level of 0.05 at about N = 260 (Fig. 2).
This indicates that there should be approximate-
ly n=130 children in each toothpaste group.
The investigator should then include in the pro-
tocol, paper or grant application a power state-
ment such as ‘it was decided to have 130 chil-
dren in each of the two toothpaste groups in
order to have a 90% chance of detecting a differ-
ence in mean dmfs increments of 0.5 at the 5%
level of significance, assuming the standard
deviation of dmfs increments to be about 1.25 in
each of the groups’.

It must be remembered that a sample size
calculation can never be totally precise since
the quantities used to calculate the sample size
are often guessed or imprecisely estimated. The
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Fig. 3 The line produced by
connecting the value of 0.4 for the
standardized difference to the power
value of 0.80 cuts the axis for a
significance level of 0.05 at about

N = 200 (a magnified section of

Fig. 1 is shown)
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effect than a large
one so the optimal
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inversely proportional
to the clinically
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Fig. 4 The line produced by
connecting the value of 0.75 for the
standardized difference to the power
value of 0.90 cuts the axis for a
significance level of 0.05 at about

N = 70 (a magnified section of Fig. 1
is shown)
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aim of the calculation is to obtain a ‘ball-park’
figure for the sample size that is practically
viable and results in a test which has sufficient
power to detect a real and important treatment
difference. The appeal of the nomogram is that
it is easy to repeat the calculations after alter-
ing one or more of the quantities required to
estimate the sample size. This is not to say it
should be used deviously or to ‘fiddle the fig-
ures’ As an illustration, suppose the sample size
of 260 in the example quoted is unrealistic.
What will be the effect on sample size of reduc-
ing the power specification from 90% to 800%?
Again, using a ruler to connect the appropriate
numbers in the nomogram, it can be seen that
this would reduce the total sample size from
260 to about 200 (Fig. 3).

Sample size calculations for other comparisons
The use of the nomogram is fairly straightfor-
ward when it is necessary to compare two means
from independent groups. The principles under-
lying the use of the nomogram remain the same
for other types of experiment; essentially, it is
the form of the standardized difference which
changes. The two sided significance level (usual-
ly 0.05) and the power, usually between 80%
and 90%, must still be specified for these calcu-
lations. The standardized differences that are
required for different comparisons are indicated
in the following bullet points.

e Comparing two groups of paired numerical
data . The paired t-test is used to test the null
hypothesis that the mean difference of a
quantitative variable in two dependent or
paired groups is zero. The standardized differ-
ence is

26/0,

where:

d1is the clinically important difference.

0, is the standard deviation of the differ-
ences. This is much harder to estimate than
the standard deviation of the individual
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observations. A pilot study is usually indi-
cated.

The N in the nomogram represents the
number of pairs of observations required in
the experiment. If each pair represents two
matched patients, the number of patients
required is 2N.

e Comparing two proportions. The chi-square
test or, equivalently, a standardized Normal
deviate is used to test the null hypothesis that
the proportion of individuals possessing a cer-
tain attribute is the same in two groups. The
response variable in this instance is a binary
categorical variable. The standardized differ-
ence is

pl_pz
V{p(1-p)}

where:
P, — b, is the difference between the propor-
tions of individuals with the attribute, that, if
it really existed, would be considered clini-
cally important.
p is the mean of p, and p,.

The N = 2n in the nomogram represents
the total number of individuals required in
the sample, with #n in each group.

As an example, suppose it is of interest to
establish the optimal sample size for a pro-
posed study which will compare, in a given
district, the dental fluorosis rates in children
aged between 5 and 18 who have been either
lifelong consumers of moderate- to high-fluo-
ride surface water (> 0.50 mg F/L) or low-fluo-
ride surface water (approximately 0.10 mg
F/L). It is believed that the dental fluorosis rate
in the low fluoride group is about 15%. A dif-
ference between the two groups in fluorosis rates of
about 35% would be regarded as clinically impor-
tant. In this case p =32.5% and the standardized
difference is (50 -15)/V (32.5 x 67.5) = 0.75. Note
that percentages have been used instead of
proportions in this example, so the ‘one’ in the
denominator of the standardized difference is
replaced by ‘100’ Thus, by using the nomo-
gram, it can be seen that in order to have a
power of 90% of detecting a difference of 35%
in fluorosis rates at the 5% level of signifi-
cance about 70 children would be required
(Fig. 4), with approximately 35 in each of the
fluoride groups.

SEQUENTIAL ANALYSIS
The methods discussed so far for determining
the optimal sample size in an experiment relate
to fixed sample size designs. It is assumed that
the total sample size is a finite number which is
fixed before the experiment is started. It is cho-
sen in accordance with relevant power consider-
ations, but also with reference to the expected
patient accrual rate and the proposed time of
investigation and costs.

As an alternative approach, the patients can
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be entered one at a time into the clinical trial,
and their responses, as they occur, can be used
to test the hypothesis of interest. Either the
trial is stopped in favour of one of the treat-
ments when a significant treatment effect is
observed; or it is stopped when it is considered
that that no treatment difference is likely to
arise. In both cases, the decision to stop is
made with reference to a chart which is con-
structed by considering the significance level,
the power and the size of the effect, all of
which are specified at the outset. Clearly, in
such a sequential trial (Armitage, 1975),° there
is no need to estimate the patient numbers at
the design stage, because the sample size
depends on the results.

The advantage of a sequential trial is that it
requires less patients than its fixed sample size
counterpart if there is a large treatment effect.
However, sequential trials are rarely per-
formed, mostly because they are restricted to
conditions in which there is only one response
and when the time required to observe the
response to treatment is not prolonged. Fur-
thermore, it can be difficult to estimate the
effect of interest and provide confidence inter-
vals in a sequential study.

INTERIM ANALYSES

Sometimes clinical trials are designed so that
the investigators can check the results at one
or more predefined intermediate stages; these
trials are often called group sequential trials.
Apart from ensuring that the trial is running
smoothly as regards compliance and that
there is no concern about side-effects, the
investigators may wish to perform signifi-
cance tests to evaluate treatment effects at
these times. Then, if one treatment is found to
be superior, the trial can be stopped early and
all the patients will go on to receive the most
effective treatment.

Clearly, there are ethical advantages to this
approach. However, be warned that such a pro-
posal is not as straightforward as it might at first
appear, and it is open to criticism if the statistical
methods are not handled appropriately.

The problem with performing significance
tests at intermediate stages is that the signifi-
cance level at the end of the trial is larger than
it would be if there were no repeated tests. In
other words, there will be a greater chance of
concluding that there is a significant differ-
ence between treatments when in reality there
is no difference between them. Hence it is nec-
essary to adjust the significance levels used
for the intermediate or interim analyses to
ensure that the final significance level is as
expected, typically 0.05 or, perhaps, 0.01.
Pocock (1983)° provides a table which shows,
under certain conditions, which significance
level to use at each intermediate stage (this is
called the nominal significance level) if the
significance level at the final stage (this is
called the overall significance level) is 0.05 or
0.01. For example, if there were to be five
repeated significance tests, the nominal level
for each should be 0.016 (ie each repeated test
is significant if P < 0.016) in order to have the
overall significance level at 0.05.
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Sequential analysis

[

The sample size in a
sequential trial is not
fixed in advance but
depends on the
results as they occur
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