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SUMMARY
Background: Inexpensive techniques for measurement and data storage now 
enable medical researchers to acquire far more data than can conveniently be 
analyzed by traditional methods. The expression “big data” refers to quantities 
on the order of magnitude of a terabyte (1012 bytes); special techniques must 
be used to evaluate such huge quantities of data in a scientifically meaningful 
way. Whether data sets of this size are useful and important is an open 
 question that currently confronts medical science. 

Methods: In this article, we give illustrative examples of the use of analytical 
techniques for big data and discuss them in the light of a selective literature 
review. We point out some critical aspects that should be considered to avoid 
errors when large amounts of data are analyzed.

Results: Machine learning techniques enable the recognition of potentially 
 relevant patterns. When such techniques are used, certain additional steps 
should be taken that are unnecessary in more traditional analyses; for 
example, patient characteristics should be differentially weighted. If this is not 
done as a preliminary step before similarity detection, which is a component of 
many data analysis operations, characteristics such as age or sex will be 
weighted no higher than any one out of 10 000 gene expression values. 
 Experience from the analysis of conventional observational data sets can be 
called upon to draw conclusions about potential causal effects from big data 
sets.

Conclusion: Big data techniques can be used, for example, to evaluate observa-
tional data derived from the routine care of entire populations, with clustering 
methods used to analyze therapeutically relevant patient subgroups. Such 
 analyses can provide complementary information to clinical trials of the classic 
type. As big data analyses become more popular, various statistical techniques 
for causality analysis in observational data are becoming more widely avail-
able. This is likely to be of benefit to medical science, but specific adaptations 
will have to be made according to the requirements of the applications.
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B ig data” is a universal buzzword in business and 
science, referring to the retrieval and handling of 

ever-growing amounts of information. It can be as-
sumed, for example, that a typical hospital generates 
hundreds of terabytes (1 TB = 1012 bytes) of data 
 annually in the course of patient care (1). For instance, 
exome sequencing, which results in 5 gigabytes (1 GB 
= 109 bytes) of data per patient, is on the way to becom-
ing routine (2). The analysis of such enormous volumes 
of information, i.e., organization and description of the 
data and the drawing of (scientifically valid) 
 conclusions, can already hardly be accomplished with 
the traditional tools of computer science and statistics. 
For example, examination of the exomes of several 
hundred patients requires sophisticated analytical 
 approaches and the selection of statistical methods that 
optimize computation time to avoid exceeding the 
available storage capacity.

This is a challenge for the discipline of statistics, 
which has traditionally analyzed data not only from 
clinical studies but also from observational studies. 
Inter alia, techniques have to cope with a number of 
characteristics per individual that greatly exceeds the 
number of individuals observed, e.g., in the acquisition 
of 5 million single-nucleotide polymorphisms from 
each of a cohort of 100 patients.

In the following description of scenarios, techniques, 
and problems we focus on medical science, i.e., on the 
question of where and how big data approaches to the 
processing of large volumes of information can 
 contribute to the advancement of scientific knowledge 
in medicine. While the description of the corresponding 
data analysis techniques takes a predominantly 
 scientific perspective, the three scenarios preceding the 
discussion of techniques are intended to guide the 
reader in how these approaches can be used in handling 
routine data.

Because clinical studies are our reference point, ap-
plications that have little in common with the structure 
of such studies, e.g., the prediction of disease spread 
from search engine data (Box), will not be discussed. 
Furthermore, concepts for technical implementation, 
e.g., cloud computing (5), will not be presented. 
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 Instead, we focus on biostatistical aspects, such as the 
undistorted estimation of treatment effects, which 
 represent a crucial precondition for progress in medical 
science (6).

Big data scenarios
Diagnosis on the basis of high-resolution measurements
The introduction of microarray methods enabled 
 characterization of patients at several molecular levels 
simultaneously at the time of diagnosis, e.g., via single-
nucleotide polymorphisms, DNA methylation, 
mRNAs, or microRNAs (7). These techniques yield 
several million items of information per patient. Statis-
tical analysis of these data could potentially lead to 
identification of parameters that distinguish among 
various diseases or point to the most suitable treatment 
option.

New sequencing techniques (referred to as next-
 generation sequencing) offer higher resolution and in-
crease the number of variables that can be examined 
(8). Where small numbers of patients are concerned, 
however, the volume of data remaining after prepro-
cessing is no longer so large and no special approaches 
to data handling are required. For example, the gene ex-
pression data for 22 000 genes from 400 patients 
amounts to less than 1 GB and can be processed on a 
standard PC. The data on 5 million single-nucleotide 
polymorphisms in 400 patients have a volume of circa 
100 GB and can be analyzed using the RAM of the kind 
of server typically available to a small scientific work-
ing group.

Genuine big-data challenges arise when, for in-
stance, the raw data, or data at several molecular levels, 
from several thousand individuals have to be consid -
ered together. In such a case the data volume becomes 
an important factor in the choice of analytic strategy, 
because not all statistical procedures lend themselves 
equally well to large volumes of information. This 

applies not only to epidemiological cohorts but also to a 
diagnostic scenario in which a patient’s data need to be 
compared with external sources. The Cancer Genome 
Atlas (TCGA), for example, offers data from several 
different molecular levels. Automated comparison is a 
challenge for computer science and statistics (10).

Continuous monitoring of healthy individuals
In the framework of the 100K project, healthy individ-
uals first have their genome sequenced and are then 
examined several times a year for a number of years. 
On each occasion classic parameters of clinical chemis-
try, parts of the microbiome, and organ-specific pro-
teins are determined and cardiac, respiratory, and sleep 
parameters are all recorded within a short period of 
time (11). A preliminary trial of this measurement pro-
gram in 108 individuals, launched in 2014, has as one 
of its goals evaluation of the technical feasibility of the 
project and the potential applications of the data. The 
idea behind the 100K project is that relevant changes in 
the observed parameters may take place long before a 
disease is diagnosed, so that early initiation of continu-
ous monitoring could permit timely corrective 
measures (12).

Thus measurement of a potentially large number of 
parameters is complicated by the dimension of time. In 
order to discern problematic developments in timely 
fashion, the data analysis must include an explicit 
search for temporal patterns in high-dimensional data.

The complexity of continuous monitoring is in-
creased by interventions such as individual nutritional 
guidance. The complexity of the approaches required 
for estimation of the consequences of interventions is 
comparable to that of the tracking of the treatment pro-
cess subsequent to diagnosis in a clinical context (13).

Prediction and treatment decisions
A third scenario is the monitoring of molecular charac-
teristics in the course of treatment. For a certain number 
of biomarkers this is already routine practice in clinical 
registries. The registry for hepatocellular carcinoma in 
Mainz, Germany (14), for example, contains data from 
in some cases over a dozen time points for more than 
1000 individuals. Thus, large amounts of information 
accumulate for each individual in the course of treat-
ment.

Based on these data, measurements at a defined time 
point reveal the probability of future events, e.g., 
 metastasis or death. It can be expected that in future 
clinical registries will include high-resolution molecu-
lar and/or imaging data, enabling cancer patients, for 
example, to be divided into groups with high and low 
risk of death, with implications for treatment (15). As in 
the diagnostic scenario, data from cohorts in the low 
hundreds of patients can, after preprocessing, be 
 analyzed on standard PCs at one single time (16). The 
temporal dimension of the measurements considerably 
increases the volume and complexity of the data.

An additional challenge lies in the parallel treatment 
process. Treatment decisions are continuously made for 

BOX

The debate about a big data showpiece:  
Google Flu Trends
In the Google Flu Trends project (3), the frequency of Google searches for 
 certain terms is used to predict the influenza activity at regional level in a large 
number of countries. The original publication (3) shows that this method enables 
precise prediction of data that have traditionally been acquired in much more 
cumbersome fashion, e.g., by the United States Centers for Disease Control and 
Prevention (CDC), and did not use to be available until some time later. The 
 possibility of rapid reaction opened up by the Google approach is often cited as a 
successful application of big data. However, later investigations (4) showed 
 serious systematic deviations from predicted values in the period covered by (3). 
These may have been caused by modification of the search engine algorithm for 
business reasons, i.e., to optimize the primary function, with resulting impairment 
of the secondary function of influenza prediction.
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each patient, based on the measured characteristics and 
influencing future measurements. Therefore, not only 
the temporal nature of the measurements but also the 
temporal pattern of treatment decisions have to be 
taken into account when, for instance, comparing 
 patients with one another and determining the best 
treatment options. Precisely this combination forms the 
foundation of personalized medicine.

Figure 1 depicts the computational and biostatistical 
complexity of the various big data analyses in different 
scenarios.

Techniques
A characteristic feature of big data scenarios is that the 
accumulated data are hard to handle by means of con-
ventional methods. The difficulty begins with the very 
first step of analysis, namely description of the data. 
With 10 potential biomarkers, for example, a table of 
mean values would typically be generated, but with 
10 000 or more possible markers such a table is no 
longer useful. Particularly in big data applications, 
 pattern recognition, i.e., the detection of relevant, 
 potentially frequent patterns, has to be supported by 
machine learning techniques that automatically recog-
nize patterns and can yield a dimension reduction  or 
preselection (17).

So-called “unsupervised” machine learning 
 techniques seek to detect, for instance, the frequent 
simultaneous occurrence of certain patient character-
istics. One example is the “bump hunting” approach, 
which gradually refines the definition criteria of 
 frequent groups of individuals (18). Alternatively, clus-
tering approaches identify groups of similar patients 
(19). If, for example, identification of biomarkers that 

show similar patterns with reference to these patient 
groups is desired, biclustering procedures are available 
(20).

In contrast, “supervised” approaches have a particu-
lar target criterion, e.g., prediction of 1-year survival 
based on the gene expression profile of the tumor at the 
time of diagnosis. A crucial aspect of these procedures 
is the automated selection of a small number of patient 
characteristics or, for example, gene expression 
 parameters, that are suitable for prediction. Another im-
portant distinction lies in whether and to what extent 
the respective approaches are based on a statistical 
model, i.e., a mathematically explicitly specified form 
of connection between the observed parameters. 
Model-based approaches stem from classical statistics 
(see [21] for extensions of regression models), while 
model-free approaches are often rooted in computer 
science (22). Prominent model-based approaches are 
regularized regression procedures (23) and logic 
 regression (24). Well-known model-free approaches in-
clude random forests (22) and support vector machines 
(25).

Model-based approaches bear a greater resemblance 
to the statistical methods used in clinical studies. 
 However, while clinical studies are designed to quan-
tify the influence of a parameter—typically the effect 
of a treatment—precisely, i.e., unbiased and with low 
variability, analysis of a large number of potential 
 parameters, e.g., candidate biomarkers, comes at a 
price. Namely, important markers are identified, but 
their effects can no longer be estimated without distor-
tion (26).

In model-based approaches the available data are 
summarized in the shape of an estimated model, on the 
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basis of which, for instance, predictions for future pa-
tients can be formulated. For model-free approaches 
this aggregation takes another form. In the random 
forest procedure, for example, a large number of deci-
sion trees (typically 500 or more) are formed, each 
from a slightly modified version of the data (27). For 
new patients a prediction, e.g., the probability of a fatal 
outcome, is generated from each of these trees and the 
predicted values are combined (typically by averaging). 
However, it is difficult to assess the influence of indi-
vidual patient characteristics on the prediction (28). 
Model-free approaches are therefore better suited for 
prediction than for increasing understanding of the 
underlying process (27).

An extreme form of model-free approach uses the 
data of all previously observed individuals directly, for 
example to make predictions for new patients. “Nearest 
neighbor” approaches, for instance, identify those indi-
viduals who are most similar to the new patients and 
predict clinical endpoints on the basis of the observa-
tions in these similar individuals (29). Based on this 
idea, “case-based reasoning” approaches (30) 
 intuitively correspond to the way a physician might 
proceed on the basis of experience with previous 
 patients. A further variant consists in developing 
 prediction models for groups of similar individuals 
(31). The Table shows an overview of the various 
 approaches with examples of the techniques and the 
typical applications.

Particularly with large amounts of data it is impor -
tant to distinguish whether there is an aggregation (e.g., 
on the basis of a model) or whether the data of all indi-
viduals have to be employed, e.g., to make predictions 
for new cases. Permanent access to large volumes of 
patient data, possibly distributed between different 
sites, is also problematic from the perspective of data 
protection (33). From the technical point of view, 
further problems arise when the collection of patient 
data is continually growing and thus repeatedly 
requires updating, e.g., for purposes of prediction. For 
this kind of learning from data streams, either adap-
tations can be carried out at regular intervals, e.g., by 
reestimation of a regression model, or specially modi-

fied procedures can be used to adapt the prediction 
model individual by individual (34).

Distinctive features of medical science
The approaches described in the foregoing section were 
often not designed with the specific demands of medi-
cine in mind. This is particularly true with regard to:
● The different types of patient characteristics
● The time structure
● The treatment information.
Without special modification, machine learning 

 routines, i.e., procedures that recognize patterns in 
automated fashion and yield a dimension reduction or 
preselection, treat all measurements or patient charac-
teristics in the same way. For example, similarity deter-
mination, a component of many procedures, assigns no 
greater weight to characteristics such as age or sex than 
to any one of 20 000 measured gene expression values. 
Even just for optimization of prediction accuracy, 
 however, it is advantageous to distinguish between 
clinical features and other characteristics, e.g., high-
 dimensional molecular measurements (35).

In continuous monitoring of individuals and when 
measurements during the course of treatment have to be 
considered, the potentially high dimension of the 
measured values is joined by the time structure as an 
additional dimension that has to be taken into account 
in data analysis (36). For example, the time of diag-
nosis is an important reference point if machine learn-
ing procedures are to be used to compare subsequent 
molecular measurements among patients or to deter-
mine similarities. The situation is further complicated 
by the different follow-up periods for different individ-
uals. This corresponds to the censoring problems that 
are tackled in clinical studies by using procedures such 
as Kaplan–Meier estimation or Cox regression for 
examination of the end point of interest. Particularly 
machine learning procedures have to be specially 
adapted for such time structures. Simplifying reduc-
tion, e.g., to a binary end point despite censoring, can 
lead to severely biased results (21). Even without cen-
soring an irregular grid of measurement time points, 
often dictated by clinical routine, may result in bias 
(37).

Finally, the treatment information and the time 
points of treatment decision and treatment change play 
an essential part in the search for patterns in potentially 
large volumes of data. In routine clinical practice the 
treatment decision is influenced by measured values, 
but in turn it will influence (future) measurements. For 
instance, if in such a constellation the effect of a treat-
ment on survival is to be determined and is, for the sake 
of comparability among patients, viewed conditionally 
on a repeatedly measured laboratory parameter, 
 typically via adjustment in a regression model, this ad-
justment can mask a part of the treatment effect, which, 
however, in turn, affects the laboratory parameter. This 
problem, which can lead to bias of estimated treatment 
effects in any direction, is generally termed “time-
 dependent confounding” (38).

TABLE

Different classes of machine learning procedures with typical applications 
and examples of approaches*

* "Unsupervised" means searching for patterns without a quantifiable target criterion (e.g., prediction 
 performance in relation to the survival status known from the data), while "supervised" means the 
 presence of a target criterion

Unsupervised

Supervised

Model-free

Description,  
pattern recognition,  
e.g., bump hunting (18)

Prediction,  
e.g., random forests (22)

Model-based

Distribution of (unknown) 
groups, e.g., mixture models 
(32)

Prediction,  
identification of  predictors,  
e.g. regularized  regression (23)
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