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SUMMARY
Background: Regression analysis is an important statisti-
cal method for the analysis of medical data. It enables the 
identification and characterization of relationships among 
multiple factors. It also enables the identification of prog-
nostically relevant risk factors and the calculation of risk 
scores for individual prognostication. 

Methods: This article is based on selected textbooks of 
statistics, a selective review of the literature, and our own 
experience.

Results: After a brief introduction of the uni- and multivari-
able regression models, illustrative examples are given to 
explain what the important considerations are before a 
 regression analysis is performed, and how the results 
should be interpreted. The reader should then be able to 
judge whether the method has been used correctly and 
 interpret the results appropriately.

Conclusion: The performance and interpretation of linear 
regression analysis are subject to a variety of pitfalls, 
which are discussed here in detail. The reader is made 
aware of common errors of interpretation through practi-
cal examples. Both the opportunities for applying linear 
regression analysis and its limitations are presented.
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T he purpose of statistical evaluation of medical 
data is often to describe relationships between 

two variables or among several variables. For example, 
one would like to know not just whether patients have 
high blood pressure, but also whether the likelihood of 
having high blood pressure is influenced by factors 
such as age and weight. The variable to be explained 
(blood pressure) is called the dependent variable, or, 
 alternatively, the response variable; the variables that 
explain it (age, weight) are called independent vari-
ables or predictor variables. Measures of association 
provide an initial impression of the extent of statistical 
dependence between variables. If the dependent and in-
dependent variables are continuous, as is the case for 
blood pressure and weight, then a correlation coeffi-
cient can be calculated as a measure of the strength of 
the relationship between them (Box 1). 

Regression analysis is a type of statistical evaluation 
that enables three things: 
● Description: Relationships among the dependent 

variables and the independent variables can be 
statistically described by means of regression 
analysis. 

● Estimation: The values of the dependent vari-
ables can be estimated from the observed values 
of the independent variables. 

● Prognostication: Risk factors that influence the 
outcome can be identified, and individual prog-
noses can be determined.

Regression analysis employs a model that describes 
the relationships between the dependent variables and 
the independent variables in a simplified mathematical 
form. There may be biological reasons to expect a 
 priori that a certain type of mathematical function will 
best describe such a relationship, or simple assump-
tions have to be made that this is the case (e.g., that 
blood pressure rises linearly with age). The best-known 
types of regression analysis are the following (Table 1):
● Linear regression, 
● Logistic regression, and
● Cox regression. 
The goal of this article is to introduce the reader to 

linear regression. The theory is briefly explained, and 
the interpretation of statistical parameters is illustrated 
with examples. The methods of regression analysis are 
comprehensively discussed in many standard text-
books (1–3). 
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Cox regression will be discussed in a later article in 
this journal.

Methods
Linear regression is used to study the linear relation-
ship between a dependent variable Y (blood pressure) 
and one or more independent variables X (age, 
weight, sex).

The dependent variable Y must be continuous, 
while the independent variables may be either con-
tinuous (age), binary (sex), or categorical (social 
status). The initial judgment of a possible relationship 
between two continuous variables should always be 
made on the basis of a scatter plot (scatter graph). 
This type of plot will show whether the relationship is 
linear (Figure 1) or nonlinear (Figure 2).

Performing a linear regression makes sense only if 
the relationship is linear. Other methods must be used 
to study nonlinear relationships. The variable trans-
formations and other, more complex techniques that 
can be used for this purpose will not be discussed in 
this article. 

Univariable linear regression
Univariable linear regression studies the linear rela-
tionship between the dependent variable Y and a 
single independent variable X. The linear regression 
model describes the dependent variable with a 
straight line that is defined by the equation Y = a + b 
× X, where a is the y-intersect of the line, and b is its 
slope. First, the parameters a and b of the regression 
line are estimated from the values of the dependent 
variable Y and the independent variable X with the 
aid of statistical methods. The regression line enables 
one to predict the value of the dependent variable Y 
from that of the independent variable X. Thus, for 
example, after a linear regression has been perform-
ed, one would be able to estimate a person’s weight 
(dependent variable) from his or her height (indepen-
dent variable) (Figure 3). 

The slope b of the regression line is called the 
 regression coefficient. It provides a measure of the 
contribution of the independent variable X toward ex-
plaining the dependent variable Y. If the independent 
variable is continuous (e.g., body height in cen-
timeters), then the regression coefficient represents 
the change in the dependent variable (body weight in 
kilograms) per unit of change in the independent vari-
able (body height in centimeters). The proper inter-
pretation of the regression coefficient thus requires 
attention to the units of measurement. The following 
example should make this relationship clear:

In a fictitious study, data were obtained from 135 
women and men aged 18 to 27. Their height ranged 
from 1.59 to 1.93 meters. The relationship between 
height and weight was studied: weight in kilograms 
was the dependent variable that was to be estimated 
from the independent variable, height in centimeters. 
On the basis of the data, the following regression line 
was determined: Y= –133.18 + 1.16 × X, where X is 

BOX 1 

Interpretation of the correlation coefficient (r)
Spearman’s coefficient:  
Describes a monotone relationship
A monotone relationship is one in which the dependent variable either rises or 
sinks continuously as the independent variable rises. 

Pearson’s correlation coefficient:  
Describes a linear relationship

Interpretation/meaning: 
Correlation coefficients provide information about the strength and direction of a 
relationship between two continuous variables. No distinction between the ex -
plaining variable and the variable to be explained is necessary:
● r = ± 1: perfect linear and monotone relationship. The closer r is to 1 or –1, the 

stronger the relationship.
● r = 0: no linear or monotone relationship
● r < 0: negative, inverse relationship (high values of one variable tend to occur 

together with low values of the other variable) 
● r > 0: positive relationship (high values of one variable tend to occur together 

with high values of the other variable) 

Graphical representation of a linear relationship:  
Scatter plot with regression line
A negative relationship is represented by a falling regression line (regression 
 coefficient b < 0), a positive one by a rising regression line (b > 0).

TABLE 1

Regression models

Linear regression

Logistic regression

Proportional hazard 
regression 
(Cox regression)

Poisson regression

Application 

Description of a 
linear relationship

Prediction of the 
probability of 
belong ing to 
groups 
(outcome: yes/no) 

Modeling of 
survival data

Modeling of 
counting processes

Dependent
 variables

Continuous
(weight,
blood pressure)

Dichotomous
(success of treat-
ment: yes/no)

Survival time 
(time from 
diagnosis to event)

Counting data: 
whole numbers re-
presenting events 
in temporal se-
quence (e.g., the 
number of times a 
woman gave birth 
over a certain 
 period of time)

Independent
variables

Continuous and/or 
categorical
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height in centimeters and Y is weight in kilograms. The 
y-intersect a = –133.18 is the value of the dependent 
variable when X = 0, but X cannot possibly take on 
the value 0 in this study (one obviously cannot expect 
a person of height 0 centimeters to weigh negative 
133.18 kilograms). Therefore, interpretation of the con-
stant is often not useful. In general, only values within 
the range of observations of the independent vari-
ables should be used in a linear regression model; 
prediction of the value of the dependent variable be-
comes increasingly inaccurate the further one goes 
outside this range. 

The regression coefficient of 1.16 means that, in 
this model, a person’s weight increases by 1.16 kg 

with each additional centimeter of height. If height 
had been measured in meters, rather than in cen-
timeters, the regression coefficient b would have been 
115.91 instead. The constant a, in contrast, is inde-
pendent of the unit chosen to express the independent 
variables. Proper interpretation thus requires that the 
regression coefficient should be considered together 
with the units of all of the involved variables. Special 
attention to this issue is needed when publications 
from different countries use different units to express 
the same variables (e.g., feet and inches vs. cen-
timeters, or pounds vs. kilograms).

Figure 3 shows the regression line that represents 
the linear relationship between height and weight. 

For a person whose height is 1.74 m, the predicted 
weight is 68.50 kg (y = –133.18 + 115.91 × 1.74 m). 
The data set contains 6 persons whose height is 1.74 
m, and their weights vary from 63 to 75 kg.

Linear regression can be used to estimate the 
weight of any persons whose height lies within the 
observed range (1.59 m to 1.93 m). The data set need 
not include any person with this precise height. 
 Mathematically it is possible to estimate the weight of a 
person whose height is outside the range of values ob-
served in the study. However, such an extrapolation is 
generally not useful.

If the independent variables are categorical or 
 binary, then the regression coefficient must be inter-
preted in reference to the numerical encoding of these 
variables. Binary variables should generally be en-
coded with two consecutive whole numbers (usually 
0/1 or 1/2). In interpreting the regression coefficient, 
one should recall which category of the independent 
variable is represented by the higher number (e.g., 2, 
when the encoding is 1/2). The regression coefficient 
reflects the change in the dependent variable that corre-
sponds to a change in the independent variable from 1 
to 2.

For example, if one studies the relationship be-
tween sex and weight, one obtains the regression line 
Y = 47.64 + 14.93 × X, where X = sex (1 = female, 2 
= male). The regression coefficient of 14.93 reflects 
the fact that men are an average of 14.93 kg heavier 
than women.

When categorical variables are used, the reference 
category should be defined first, and all other 
 categories are to be considered in relation to this cat-
egory.

The coefficient of determination, r2, is a measure 
of how well the regression model describes the ob-
served data (Box 2). In univariable regression analy-
sis, r2 is simply the square of Pearson’s correlation 
coefficient. In the particular fictitious case that is de-
scribed above, the coefficient of determination for the 
relationship between height and weight is 0.785. This 
means that 78.5% of the variance in weight is due to 
height. The remaining 21.5% is due to individual 
variation and might be explained by other factors that 
were not taken into account in the analysis, such as 
eating habits, exercise, sex, or age. 

FIGURE 1A scatter plot 
 showing a linear 

 relationship

FIGURE 2A scatter plot show-
ing an exponential 
relationship. In this 

case, it would not 
be appropriate to 
compute a coeffi-
cient of determi-

nation or a regres-
sion line
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In formal terms, the null hypothesis, which is the 
hypothesis that b = 0 (no relationship between vari-
ables, the regression coefficient is therefore 0), can be 
tested with a t-test. One can also compute the 95% 
confidence interval for the regression coefficient (4).

Multivariable linear regression
In many cases, the contribution of a single independent 
variable does not alone suffice to explain the dependent 
variable Y. If this is so, one can perform a multivariable 
linear regression to study the effect of multiple vari-
ables on the dependent variable. 

In the multivariable regression model, the dependent 
variable is described as a linear function of the indepen-
dent variables Xi, as follows: Y = a + b1 × X1 + b2 × X2 
+…+ bn × Xn . The model permits the computation of a 
regression coefficient bi for each independent variable 
Xi (Box 3).

Just as in univariable regression, the coefficient of 
determination describes the overall relationship 
 between the independent variables Xi (weight, age, 
body-mass index) and the dependent variable Y (blood 
pressure). It corresponds to the square of the multiple 
correlation coefficient, which is the correlation be-
tween Y and b1 × X1 + ... + bn × Xn.

It is better practice, however, to give the corrected 
coefficient of determination, as discussed in Box 2. 
Each of the coefficients bi reflects the effect of the 
corresponding individual independent variable Xi on 
Y, where the potential influences of the remaining 
 independent variables on Xi have been taken into ac-
count, i.e., eliminated by an additional computation. 
Thus, in a multiple regression analysis with age and sex 
as independent variables and weight as the dependent 
variable, the adjusted regression coefficient for sex 
represents the amount of variation in weight that is 
due to sex alone, after age has been taken into ac-
count. This is done by a computation that adjusts for 
age, so that the effect of sex is not confounded by a 
simultaneously operative age effect (Box 4).

In this way, multivariable regression analysis permits 
the study of multiple independent variables at the same 
time, with adjustment of their regression coefficients for 
possible confounding effects between  variables.

Multivariable analysis does more than describe a 
statistical relationship; it also permits individual prog-
nostication and the evaluation of the state of health of a 
given patient. A linear regression model can be used, 
for instance, to determine the optimal values for respi -
ratory function tests depending on a person’s age, 
body-mass index (BMI), and sex. Comparing a 
 patient’s measured respiratory function with these com-
puted optimal values yields a measure of his or her state 
of health. 

Medical questions often involve the effect of a very 
large number of factors (independent variables). The 
goal of statistical analysis is to find out which of these 
factors truly have an effect on the dependent variable. 
The art of statistical evaluation lies in finding the vari-
ables that best explain the dependent variable. 

One way to carry out a multivariable regression is to 
include all potentially relevant independent variables in 
the model (complete model). The problem with this 
method is that the number of observations that can 
practically be made is often less than the model 
requires. In general, the number of observations should 
be at least 20 times greater than the number of variables 
under study. 

Moreover, if too many irrelevant variables are in-
cluded in the model, overadjustment is likely to be the re-
sult: that is, some of the irrelevant independent variables 
will be found to have an apparent effect, purely by 
chance. The inclusion of irrelevant independent variables 
in the model will indeed allow a better fit with the data 
set under study, but, because of random effects, the find-
ings will not generally be applicable outside of this data 
set (1). The inclusion of irrelevant independent variables 
also strongly distorts the determination coefficient, so 
that it no longer provides a useful index of the quality 
of fit between the model and the data (Box 2).

In the following sections, we will discuss how these 
problems can be circumvented. 

The selection of variables
For the regression model to be robust and to explain Y 
as well as possible, it should include only independent 
variables that explain a large portion of the variance in 
Y. Variable selection can be performed so that only 
such independent variables are included (1).

Variable selection should be carried out on the basis 
of medical expert knowledge and a good understanding 
of biometrics. This is optimally done as a collaborative 

FIGURE 3

A scatter plot and the corresponding regression line and regression 
equation for the relationship between the dependent variable body 
weight (kg) and the independent variable height (m). 
r = Pearsons’s correlation coefficient
R-squared linear = coefficient of determination
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effort of the physician-researcher and the statistician. 
There are various methods of selecting variables:

Forward selection
Forward selection is a stepwise procedure that includes 
variables in the model as long as they make an addi-
tional contribution toward explaining Y. This is done 
 iteratively until there are no variables left that make any 
appreciable contribution to Y.

Backward selection
Backward selection, on the other hand, starts with a 
model that contains all potentially relevant indepen-
dent variables. The variable whose removal worsens 
the prediction of the independent variable of the 
overall set of independent variables to the least ex-
tent is then removed from the model. This procedure 
is iterated until no dependent variables are left that 
can be removed without markedly worsening the 
prediction of the independent variable.

BOX 2 

Coefficient of determination (R-squared)
Definition: 
Let
● n be the number of observations (e.g., subjects in the study)
● ŷ

i
 be the estimated value of the dependent variable for the ith observation, as computed with the regression equation

● y
i
 be the observed value of the dependent variable for the ith observation 

● y be the mean of all n observations of the dependent variable

The coefficient of determination is then defined 
as follows:

→ r2 is the fraction of the overall variance that is explained. The closer the regression model’s estimated values ŷ
i 
 lie to the ob-

served values y
i
, the nearer the coefficient of determination is to 1 and the more accurate the regression model is.

Meaning: In practice, the coefficient of determination is often taken as a measure of the validity of a regression model or a re-
gression estimate. It reflects the fraction of variation in the Y-values that is explained by the regression line. 

Problem: The coefficient of determination can easily be made artificially high by including a large number of independent va-
riables in the model. The more independent variables one includes, the higher the coefficient of determination becomes. This, 
however, lowers the precision of the estimate (estimation of the regression coefficients b

i
).

Solution: Instead of the raw (uncorrected) coefficient of determination, the corrected coefficient of determination should be gi-
ven: the latter takes the number of explanatory variables in the model into account. Unlike the uncorrected coefficient of deter-
mination, the corrected one is high only if the independent variables have a sufficiently large effect.

BOX 3 

Regression line for a multivariable 
 regression
Y= a + b

1 
× X

1 
+ b

2 
× X

2
+ ...+ b

n 
× X

n 
, 

where
Y = dependent variable
X

i 
= independent variables

a = constant (y-intersect)
b

i
= regression coefficient of the variable X

i
 

Example: regression line for a multivariable regressi-
on Y = –120.07 + 100.81 × X

1 
+ 0.38 × X

2 
+ 3.41 × X

3 
, 

where
X

1 
= height (meters)

X
2 
= age (years)

X
3 
= sex (1 = female, 2 = male)

Y = the weight to be estimated (kg)

–
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Stepwise selection 
Stepwise selection combines certain aspects of for-
ward and backward selection. Like forward selec-
tion, it begins with a null model, adds the single in-
dependent variable that makes the greatest contribu-
tion toward explaining the dependent variable, and 
then iterates the process. Additionally, a check is 
performed after each such step to see whether one of 
the variables has now become irrelevant because of 
its relationship to the other variables. If so, this vari-
able is removed.

Block inclusion
There are often variables that should be included in 
the model in any case—for example, the effect of a 
certain form of treatment, or independent variables 
that have already been found to be relevant in prior 
studies. One way of taking such variables into 
 account is their block inclusion into the model. In this 
way, one can combine the forced inclusion of some 
variables with the selective inclusion of further 
 independent variables that turn out to be relevant 
to the explanation of variation in the dependent 
 variable.

The evaluation of a regression model requires the 
performance of both forward and backward selection 
of variables. If these two procedures result in the 
 selection of the same set of variables, then the model 
can be considered robust. If not, a statistician should 
be consulted for further advice.

Discussion
The study of relationships between variables and the 
generation of risk scores are very important elements 
of medical research. The proper performance of regres-
sion analysis requires that a number of important fac-
tors should be considered and tested:

1. Causality
Before a regression analysis is performed, the causal 
relationships among the variables to be considered 
must be examined from the point of view of their con-
tent and/or temporal relationship. The fact that an inde-
pendent variable turns out to be significant says 
 nothing about causality. This is an especially relevant 
point with respect to observational studies (5). 

2. Planning of sample size
The number of cases needed for a regression analysis 
depends on the number of independent variables and of 
their expected effects (strength of relationships). If the 
sample is too small, only very strong relationships will 
be demonstrable. The sample size can be planned in 
the light of the researchers’ expectations regarding the 
coefficient of determination (r2) and the regression 
 coefficient (b). Furthermore, at least 20 times as many 
observations should be made as there are independent 
variables to be studied; thus, if one wants to study 2 
 independent variables, one should make at least 40 
 observations. 

3. Missing values
Missing values are a common problem in medical data. 
Whenever the value of either a dependent or an inde-
pendent variable is missing, this particular observation 
has to be excluded from the regression analysis. If 
many values are missing from the dataset, the effective 
sample size will be appreciably diminished, and the 
sample may then turn out to be too small to yield 
 significant findings, despite seemingly adequate 
 advance planning. If this happens, real relationships 
can be overlooked, and the study findings may not be 
generally applicable. Moreover, selection effects can 

BOX 4

Two important terms
● Confounder (in non-randomized studies): an independent variable that is as-

sociated, not only with the dependent variable, but also with other independent 
variables. The presence of confounders can distort the effect of the other inde-
pendent variables. Age and sex are frequent confounders.

● Adjustment: a statistical technique to eliminate the influence of one or more 
confounders on the treatment effect. Example: Suppose that age is a con-
founding variable in a study of the effect of treatment on a certain dependent 
variable. Adjustment for age involves a computational procedure to mimic a 
situation in which the men and women in the data set were of the same age. 
This computation eliminates the influence of age on the treatment effect.

BOX 5 

What special points require attention in the 
 interpretation of a regression analysis?
1. How big is the study sample?
2. Is causality demonstrable or plausible, in view of the content or temporal 

 relationship of the variables? 
3. Has there been adjustment for potential confounding effects? 
4. Is the inclusion of the independent variables that were used justified, in view of 

their content?
5. What is the corrected coefficient of determination (R-squared)?
6. Is the study sample homogeneous?
7. In what units were the potentially relevant independent variables reported?
8. Was a selection of the independent variables (potentially relevant independent 

variables) performed, and, if so, what kind of selection?
9. If a selection of variables was performed, was its result confirmed by a second 

selection of variables that was performed by a different procedure?
10. Are predictions of the dependent variable made on the basis of extrapolated 

data?
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be expected in such cases. There are a number of ways 
to deal with the problem of missing values (6).

4. The data sample
A further important point to be considered is the com-
position of the study population. If there are subpopu-
lations within it that behave differently with respect to 
the independent variables in question, then a real effect 
(or the lack of an effect) may be masked from the 
analysis and remain undetected. Suppose, for instance, 
that one wishes to study the effect of sex on weight, in 
a study population consisting half of children under 
age 8 and half of adults. Linear regression analysis 
over the entire population reveals an effect of sex on 
weight. If, however, a subgroup analysis is performed 
in which children and adults are considered separately, 
an effect of sex on weight is seen only in adults, and 
not in children. Subgroup analysis should only be per-
formed if the subgroups have been predefined, and the 
questions already formulated, before the data analysis 
begins; furthermore, multiple testing should be taken 
into account (7, 8).

5. The selection of variables
If multiple independent variables are considered in a 
multivariable regression, some of these may turn out to 
be interdependent. An independent variable that would 
be found to have a strong effect in a univariable regres-
sion model might not turn out to have any appreciable 
effect in a multivariable regression with variable selec-
tion. This will happen if this particular variable itself 
depends so strongly on the other independent variables 
that it makes no additional contribution toward ex-
plaining the dependent variable. For related reasons, 
when the independent variables are mutually de -
pendent, different independent variables might end up 
being included in the model depending on the particu-
lar technique that is used for variable selection.

Overview
Linear regression is an important tool for statistical 
analysis. Its broad spectrum of uses includes relation-
ship description, estimation, and prognostication. The 
technique has many applications, but it also has pre-
requisites and limitations that must always be con-
sidered in the interpretation of findings (Box 5). 
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