Universitätslehrgänge "Clinical Research" Epidemiologische Grundlagen

ao. Univ.-Prof. Mag. Dr. Hanno Ulmer hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Inhalte des Seminars

- Epidemiologie
 - epidemiologische Maßzahlen
 - Altersstandardisierung
 - Studientypen
- Biostatistische Methoden
 - deskriptive Statistik
 - schließende Statistik
 - Regressionsanalyse
- Bias und Confounding
- Literatur lesen

Übungen

- Übung zur deskriptiven Statistik
- Berechnen Sie das relative Risiko
- Führen Sie einen Chi-Quadrat Test durch
- Epidemiologische Studie lesen und mittels STROBE Checkliste pr
 üfen

Grundlagen der Epidemiologie

Hanno Ulmer

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Epidemiologie, Definition

- Die **Epidemiologie** (von griech. epi "auf, über", demos "Volk", logos "Lehre", ursprünglich: "Seuchenkunde") ist jene wissenschaftliche Disziplin, die sich mit den Ursachen und Folgen sowie der Verbreitung von gesundheitsbezogenen Zuständen und Ereignissen in Populationen beschäftigt. Die Epidemiologie untersucht somit jene Faktoren, die zu Gesundheit und Krankheit von Individuen und Populationen beitragen und ist deshalb die Basis aller Maßnahmen, die im Interesse der Volksgesundheit unternommen werden.
- Im Gegensatz dazu kümmert sich die <u>Medizin</u> darum, dem einzelnen Menschen in einem konkreten Krankheitsfall zu helfen.

Bereiche/Teilgebiete der Epidemiologie

Infektionsepidemiologie, Epidemiologie allergischer und dermatologischer Erkrankungen, Epidemiologie der Arbeitswelt, Epidemiologische Methoden, Ernährungsepidemiologie, Genetische Epidemiologie, Herz-Kreislauf-Epidemiologie, Krebsepidemiologie, etc.

Schlüsselfragen der Epidemiologie

- Was?
 - Um welches Gesundheitsproblem geht es? Spezifizierung
- Wann?
 - Zu welchem Zeitpunkt oder in welchem Zeitraum?
- Wo?
 - An welchen Orten tritt das Problem auf?
- Wer?
 - Wer ist von dem Problem betroffen? Geschlecht, Alter, Sozialstatus...
- Warum?
 - Welche Ursachen gibt es für das Problem?

Herzkreislauf-Epidemiologie: Beispiel Schlaganfalls

Hanno Ulmer

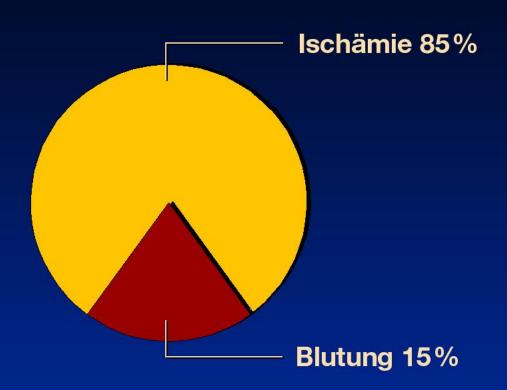
Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Definition des Schlaganfalls

Allgemein

Akutes fokales neurologisches Defizit auf Grund eines umschriebenen Durchblutungsmangels oder einer Blutung des Gehirns

Definition des Schlaganfalls



Transitorische Ischämische Attacke

Die TIA ist ein reversibler ischämischer Schlaganfall, gekennzeichnet durch schlagartig auftretendes fokales neurologisches Defizit mit vollständiger Rückbildung in Minuten bis wenigen Stunden, spätestens innerhalb von 24 Stunden

Schlaganfall

Prävalenz, Inzidenz und Letalität des Schlaganfalls in Deutschland

Prävalenz

400.000-600.000

(600-700/10.000 Einw.)*

Inzidenz

120.000-200.000

(15-25/10.000/Jahr)

Letalität**

15.000-30.000/Jahr

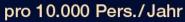
(10-20%)

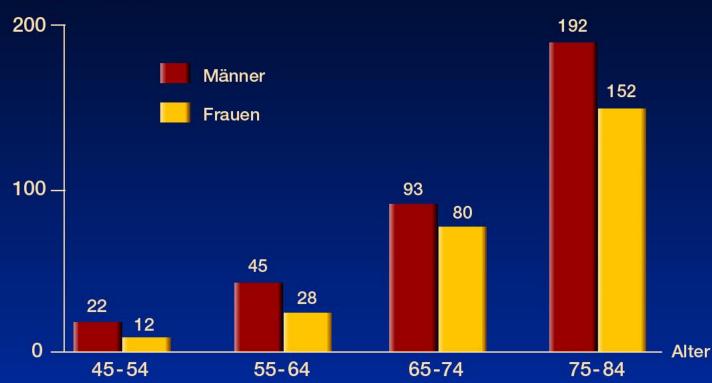
^{* &}gt; 65 Jahre

^{**} innerh. v. 30 Tagen im Krankenhaus

Risikofaktor	Ischämie	Blu intrazerebral	tung subarachnoidal	
Hypertonie	++	++	+	
Zigarettenrauchen	++	+-	++	
Diabetes mellitus	++	0	0	
Alkoholabusus	+-	++	+	
Fettstoff- wechselstörung	+	0	0	
Herzkrankheiten	++	0	0	

⁺⁺ enge Beziehung


⁺ mäßige Beziehung


⁺⁻ Beziehung nicht eindeutig

keine Beziehung

0

Inzidenz des ersten Schlaganfalls*

* einschließlich TIA's

Framingham-Studie

Risikofaktor	Prävalenz
Hypertonie	25 – 40 %
Diabetes mellitus	4 – 8%
Zigarettenrauchen	20 – 40 %
Alkoholabusus	6 – 30 %
Fettstoff- wechselstörung	5 – 30 %
Herzkrankheiten	10 – 20 %
Vorhofflimmern	1%

Risikofaktor	Relatives Risiko
Hypertonie	bis 5 fach
Diabetes mellitus	bis 3 fach
Zigarettenrauchen	bis 2 fach
Alkoholabusus	bis 4 fach *
Fettstoff- wechselstörung	bis 3 fach
Herzkrankheiten	bis 4 fach
Vorhofflimmern	bis 17fach **

^{*} unter Einschluß der Hirnblutung

^{**} bei Kombination

Grundbegriffe der Epidemiologie

Hanno Ulmer

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Inzidenz: Maß für die Anzahl der Neuerkrankungen in einem definierten Zeitraum Prävalenz: Maß für die Anzahl von Erkrankten zu

einem definierten Zeitpunkt

Mortalität: Maß für die Anzahl der Todesfälle

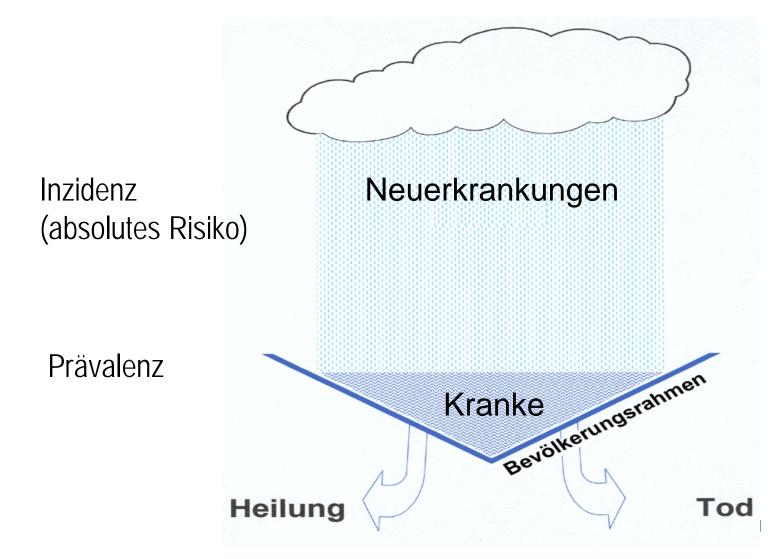
Altersstandardisierung

Inzidenz = Anzahl der Neuerkrankungen im Beobachtungszeitraum / Anzahl der Personen unter Risiko (zu Beginn des Zeitraums)

Beispiel: In einer Stadt leben 100.000 Frauen. Aktuell leiden 800 von ihnen an Brustkrebs. Von den anderen 99.200 erkranken im Laufe eines Jahres 110 an Brustkrebs.

Inzidenz = 110/99.200 = 0,001109 oder 110,9 pro 100,000 Frauen

Prävalenz = Anzahl der Erkrankungsfälle in der Bevölkerung / Bevölkerungsumfang


Beispiel: Aktuell sind 800 von 100.000 Frauen an Brustkrebs erkrankt.

Prävalenz = 800/100.000 = 0,008 oder 800 pro 100,000 Frauen

Prävalenz = Inzidenz x Krankheitsdauer

Prävalenz versus Inzidenz

Gesamtmortalität = Anzahl der Todesfälle in einem Zeitraum / Bevölkerungsumfang

Beispiel: Im Laufe eines Jahres versterben in der Beispielstadt 100 Frauen.

Gesamtmortalität = 100/100.000 = 0,001 oder 100 pro 100,000 Frauen

Ursachenspezifische Mortalität = Anzahl der Todesfälle nach Ursache in einem Zeitraum / Bevölkerungsumfang

Beispiel: Von den 100 Todesfällen sind 40 auf Brustkrebs zurückzuführen. Somit beträgt die

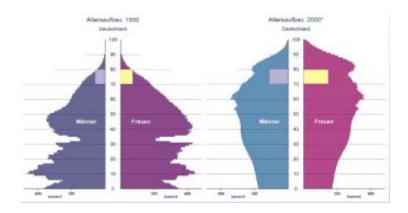
Brustkrebsmortalität = 40/100.000 = 0,0004 oder 40 von 100.000 Frauen.

Altersspezifische Mortalität = Anzahl der Todesfälle in einer bestimmten Altersklasse / Bevölkerungsumfang in dieser Altersklasse

Beispiel: In der betrachteten Stadt sind 16.000 Frauen zwischen 55 und 60 Jahre alt. In dieser Altersklasse versterben im Laufe des Jahres 10 Frauen.

Altersspezifische Mortalität = 10/16.000 = 0,000625 oder 63 von 100.000 Frauen.

Letalität ("Tödlichkeit einer Erkrankung") = Anzahl der Todesfälle nach Ursache in einem Zeitraum / Anzahl der Neuerkrankungen an dieser Ursache im selben Zeitraum


Beispiel: Von den 110 neu an Brustkrebs erkrankten Frauen sterben im Laufe des Jahres 10 Frauen.

Letalität = 10/110 = 0,091 oder 9,1%

Altersstandardisierung

Ermöglicht den Vergleich von Bevölkerungen mit unterschiedlicher Altersstruktur, indem verzerrende Alterseinflüsse beseitigt werden.

Aufgrund des demographischen Wandels nimmt die Anzahl der über 70-jährigen stark zu. Dies muss bei temporalen Vergleichen berücksichtigt werden

Altersstandardisierung - Beispiel

Schritt 1: Berechnung der rohen Mortalitätsraten

		Kreu	zberg	Zehlendorf			
Altersklasse	Population	Todesfälle		Population	Todesfälle		
0-19	34.000	34		18.000	5		
20-44	75.500	135		32.000	30		
45-64	27.000	299		29.000	165		
65 und älter	15.000	1.167		20.000	1.585		
Insgesamt	151.500	1.635		99.000	1.785		

Rohe Mortalität:

Kreuzberg
$$\frac{1.635}{151.500} = 10.8 \text{ pro } 1.000 \text{ Einwohner}$$

Zehlendorf
$$\frac{1.785}{99.000}$$
 = 18,0 pro 1.000 Einwohner

Beispiel zur Altersstandardisierung, entnommen einem Vortrag von A. Daugs, Tumorzentrum Erlangen-Nürnberg

Altersstandardisierung - Beispiel

Schritt 2: Berechnung der altersspezifischen Mortalitätsraten

		Kreuzberg				Zehlendorf			
Altersklasse	Population	Todesfälle	Mortalität*		Population	Todesfälle	Mortalität*		
0-19	34.000	34	1,0		18.000	5	0,3		
20-44	75.500	135	1,8		32.000	30	0,9		
45-64	27.000	299	11,1		29.000	165	5,7		
65 und älter	15.000	1.167	77,8		20.000	1.585	79,3		
Insgesamt	151.500	1.635			99.000	1.758			

Rohe Mortalität:

Kreuzberg
$$\frac{1.635}{151.500} = 10.8 \text{ pro } 1.000 \text{ Einwohner}$$

Zehlendorf
$$\frac{1.785}{99.000}$$
 = 18,0 pro 1.000 Einwohner

Altersstandardisierung - Beispiel

Schritt 3: Wahl einer Standardpopulation

		Kreuzberg				Zehlendorf			
Altersklasse	Standard	Population	Todesfälle	Mortalität*		Population	Todesfälle	Mortalität*	
0-19	385.000	34.000	34	1,0		18.000	5	0,3	
20-44	850.500	75.500	135	1,8		32.000	30	0,9	
45-64	540.000	27.000	299	11,1		29.000	165	5,7	
65 und älter	356.000	15.000	1.167	77,8		20.000	1.585	79,3	
Insgesamt	2.131.500	151.500	1.635			99.000	1.758		

Rohe Mortalität:

Kreuzberg
$$\frac{1.635}{151.500} = 10.8 \text{ pro } 1.000 \text{ Einwohner}$$

Zehlendorf
$$\frac{1.785}{99.000}$$
 = 18,0 pro 1.000 Einwohner

Altersstandardisierung - Beispiel

Schritt 4: Anwendung der altersspezifischen Mortalitätsraten auf die fiktive Standardpopulation

			Kreu	zberg		Zehlendorf			
Altersklasse	Standard	Population	Todesfälle	Mortalität	Erw. Fälle	Population	Todesfälle	Mortalität	Erw. Fälle
0-19	385.000	34.000	34	1,0	385	18.000	5	0,3	116
20-44	850.500	75.500	135	1,8	1.531	32.000	30	0,9	765
45-64	540.000	27.000	299	11,1	5.994	29.000	165	5,7	3.078
65 und älter	356.000	15.000	1.167	77,8	27.697	20.000	1.585	79,3	28.231
Insgesamt	2.131.500	151.500	1.635			99.000	1.758		

Rohe Mortalität:

Kreuzberg
$$\frac{1.635}{151.500} = 10.8 \text{ pro } 1.000 \text{ Einwohner}$$

Zehlendorf
$$\frac{1.785}{99.000}$$
 = 18,0 pro 1.000 Einwohner

^{*} alle Raten pro 1.000 Personen

Altersstandardisierung - Beispiel

Schritt 5: Berechnung der altersstandardisierten Mortalitätsraten

			Kreu	zberg		Zehlendorf			
Altersklasse	Standard	Population	Todesfälle	Mortalität	Erw. Fälle	Population	Todesfälle	Mortalität	Erw. Fälle
0-19	385.000	34.000	34	1,0	385	18.000	5	0,3	116
20-44	850.500	75.500	135	1,8	1.531	32.000	30	0,9	765
45-64	540.000	27.000	299	11,1	5.994	29.000	165	5,7	3.078
65 und älter	356.000	15.000	1.167	77,8	27.697	20.000	1.585	79,3	28.231
Insgesamt	2.131.500	151.500	1.635	16,7	35.607	99.000	1.758	15,1	32.190

Rohe Mortalität:

Kreuzberg $\frac{1.635}{151.500} = 10.8 \text{ pro } 1.000 \text{ Einwohner}$

Zehlendorf
$$\frac{1.785}{99.000}$$
 = 18,0 pro 1.000 Einwohner

Altersstandardisierte Mortalität:

Kreuzberg
$$\frac{35.607}{2.131.500}$$
 = 16,7 pro 1.000 Einwohner

Zehlendorf
$$\frac{32.190}{2.131.500} = 15,1 \text{ pro } 1.000 \text{ Einwohner}$$

^{*} alle Raten pro 1.000 Personen

Altersstandardisierung - Beispiel

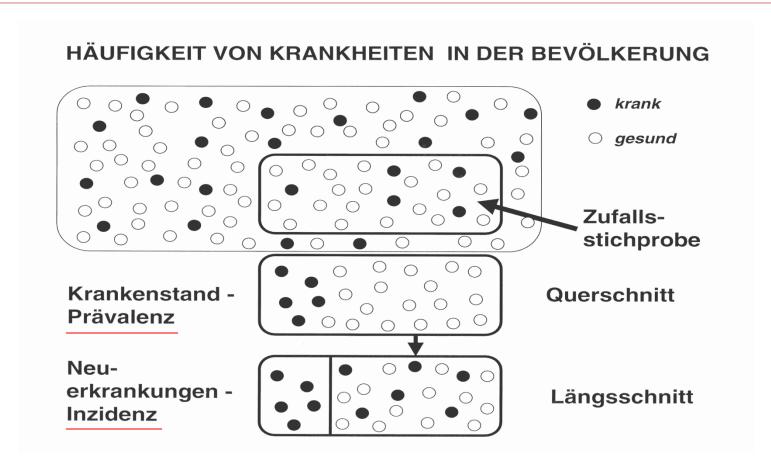
Der Vergleich der altersstandardisierten mit der rohen Mortalität zeigt die verzerrenden Alterseinflüsse.

7 1101 0 0 11 11 10 0 0 0 .										
			Kreuz	zberg		Zehlendorf				
Altersklasse	Standard	Population	Todesfälle	Mortalität	Erw. Fälle	Population	Todesfälle	Mortalität	Erw. Fälle	
0-19	385.000	34.000	34	1,0	385	18.000	5	0,3	116	
20-44	850.500	75.500	135	1,8	1.531	32.000	30	0,9	765	
45-64	540.000	27.000	299	11,1	5.994	29.000	165	5,7	3.078	
65 und älter	356.000	15.000	1.167	77,8	27.697	20.000	1.585	79,3	28.231	
Insgesamt	2.131.500	151.500	1.635	16,7	35.607	99.000	1.758	15,1	32.190	

Rohe Mortalität:

Kreuzberg
$$\frac{1.635}{151.500} = 10.8$$
 bro 1.000 Einwohner

Zehlendorf
$$\frac{1.785}{99.000} = 18,0$$
 bro 1.000 Einwohner


Altersstandardisierte Mortalität:

Kreuzberg
$$\frac{35.607}{2.131.500} = 16,7$$
 pro 1.000 Einwohner

^{*} alle Raten pro 1.000 Personen

Prävalenz/Inzidenz schätzen

Die wichtigsten Studientypen

Dr. Hanno Ulmer

hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

EPI DEMOS – ,Was auf dem Volke liegt'

MEDIZINISCHE UNIVERSITÄT

Gesundheitsproblem beschreiben

- Kasuistik
- Fallserie
- Survey
- Register

quantifizieren

- Kontrollierte Studie
- RCT

Fazit für die Praxis

- Anwendungsbeobachtung
- Meta-Analyse, system. Review
- Leitlinien-, HTA-Bericht

12.04.2019

hanno.ulmer@i-med.ac.at

Welche Studientypen kennen Sie?

Querschnittstudie

Ökologische Studie

Klinische Prüfung/RCT

Kasuistik/Fallserie

Prävalenzstudie

Interventionsstudie

Kohortenstudie

Meta-Analyse

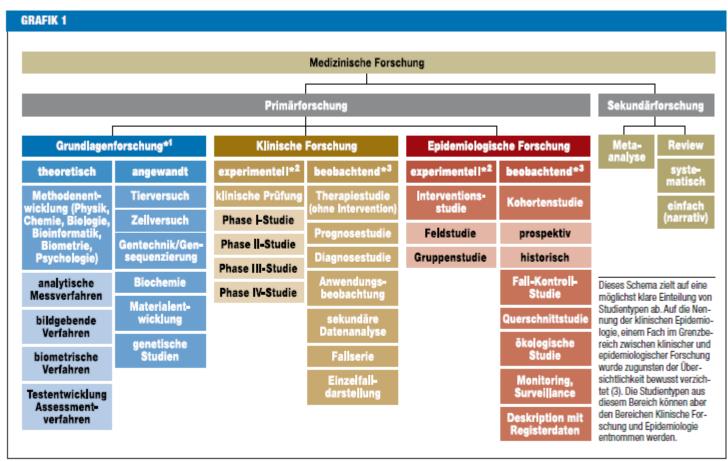
Fall-Kontroll-Studie

Medizinische Statistik

ao. Univ.-Prof. Mag. Dr. Hanno Ulmer hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Grundlagen


Hanno Ulmer

hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Medizinische Forschung

Einteilung verschiedener Studientypen

^{*1} häufig synonym verwendet: Experimentelle Forschung; *2 analoger Begriff: interventionell; *3 analoger Begriff: nicht interventionell/nicht experimentell

Statistik in medizinischen Top Journals

The American Statistician, February 2007, Vol. 61, No. 1

MEDICINE

The Use of Statistics in Medical Research: A Comparison of *The New England Journal of Medicine* and *Nature Medicine*

Alexander M. Strasak, Qamruz Zaman, Gerhard Marinell, Karl P. Pfeiffer, and Hanno Ulmer

Methodik der Fallstudie

- Alle Originalarbeiten publiziert im ersten Halbjahr 2004:
 - Vol. 350 No. 1–26 of NEJM
 - Vol. 10 No. 1–6 of NatMed

wurde für die bibliometrische Analyse ausgewählt

- Editorials, Letters, Case Reports wurden nicht analysiert
- Zusätzlich wurden die Wiener klinische und die Wiener medizinische Wochenschrift untersucht:

AUSTRIAN JOURNAL OF STATISTICS Volume 36 (2007), Number 2, 141–152

The Use of Statistics in Medical Research:
A Comparison of Wiener Klinische Wochenschrift
and Wiener Medizinische Wochenschrift

Alexander M. Strasak¹, Qamruz Zaman¹, Gerhard Marinell²,
Karl P. Pfeiffer¹, and Hanno Ulmer¹

¹Dept. of Medical Statistics, Informatics and Health Economics,
Innsbruck Medical University, Austria

²Inst. of Statistics, University of Innsbruck, Austria

Statistische Verfahren

Kategorien nach Emerson/Colditz 1985		England nal of Medicine 1)	Natur Medic (n = 3	cine
Types and Frequencies of Statistical Methods‡	n	%	n	%
No statistical methods	2	2.2	1	2.9
Descriptive statistics only	3	3.3	5	14.7
Inferential methods	86	94.5	28	82.4
t-tests	32	35.2	14	41.2
Contingency table analysis				
Basic (x2-, Fishers Exact test)	42	46.2	0	0.0
Advanced	6	6.6	0	0.0
Non-parametric tests	24	26.4	7	20.6
Analysis of Variance				
Basic (one-way ANOVA)	6	6.6	9	26.5
Advanced	6	6.6	1	2.9
Correlation coefficients	12	13.2	2	5.9
Regression				
Basic (simple-linear regression)	4	4.4	1	2.9
Advanced	27	29.7	0	0.0
Epidemiologic methods	25	27.5	0	0.0
Survival Analysis	39	42.9	4	11.8
Other methods	15	16.5	5	14.7
Unidentified method/test	1	1.1	10	29.4
Confidence intervals	61	67.0	0	0.0

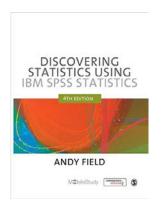
Nature Medicine versus New England Journal of Medicine

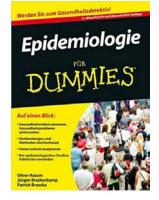
- In über 95% der Originalarbeiten wurden statistische Methoden verwendet
- Statistische Methodik unterscheidet sich zwischen
 - Grundlagenwissenschaft (Nature Medicine)
 - Klinische Forschung (NEJM)
- Methodik komplexer in NEJM
- Keine Fallzahlschätzung bzw. Poweranalyse in NatMed
- Dokumentation der Methoden mangelhaft, fehlt fast völlig in Nature Medicine
- Chi² Test, Überlebenszeitanalyse in NEJM, t-test in Nature Medicine

Literaturhinweise

Grundlagenwissenschaft

Klinische Forschung




Epidemiologische Forschung

Prof. Dr. Leonhard Held / Prof. Dr. Burkhardt Seifert / Dr. Kaspar Rufibach Medizinische Statistik

Inhalte aus Kapitel 1

Prof. Dr. Leonhard Held / Prof. Dr. Burkhardt Seifert / Dr. Kaspar Rufibach Medizinische Statistik

ISBN 978-3-8689-4100-5 448 Seiten | 2-farbig Juli 2013 € 34,95 [D] | € 36,00 [A] | SFR 46,70

www.pearson-studium.de www.pearson.ch

Quellen, Internet, Software

- British Medical Journal Statistics at Square One
- Deutsches Ärzteblatt Bewertung wissenschaftlicher Publikationen
- Deutsche Medizinische Wochenschrift Statistik-Serie
- Jumbo Münster
- Graphpad Quickcalcs
- R, Stata, SPSS, SAS, Statistica, GraphPad, MedCalc
- nQuery Advisor, East, PASS, StudySize

Häufig verwendete statistische Methoden

- Studienplanung
- Fragestellung
- Hypothesen
- Studiendesign
- Fallzahlschätzung
- Datenerhebung
- Statistische Auswertung
- Deskriptive Statistik
- Inferenzstatistik I: Schätzen von Parametern mittels Konfidenzintervallen
- Inferenzstatistik II: Unterschiede, Hypothesenprüfung mittels Signifikanztests
- Inferenzstatistik III: Zusammenhänge, Korrelations- und Regressionsanalysen

Beispielstudie

Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial

Milo A Puhan, Alex Suarez, Christian Lo Cascio, Alfred Zahn, Markus Heitz, Otto Braendli

Abstract

Objective To assess the effects of didgeridoo playing on daytime sleepiness and other outcomes related to sleep by reducing collapsibility of the upper airways in patients with moderate obstructive sleep apnoea syndrome and snoring. Design Randomised controlled trial.

Setting Private practice of a didgeridoo instructor and a single centre for sleep medicine.

Participants 25 patients aged >18 years with an apnoea-hypopnoea index between 15 and 30 and who complained about snoring.

Interventions Didgeridoo lessons and daily practice at home with standardised instruments for four months. Participants in the control group remained on the waiting list for lessons.

Main outcome measure Daytime sleepiness (Epworth scale from 0 (no daytime sleepiness) to 24), sleep quality (Pittsburgh quality of sleep index from 0 (excellent sleep quality to 21), partner rating of sleep disturbance (visual analogue scale from 0 (not disturbed) to 10), apnoea-hypopnoea index, and health related quality of life (SF-36).

Results Participants in the didgeridoo group practised an average of 5.9 days a week (SD 0.86) for 25.3 minutes (SD 3.4). Compared with the control group in the didgeridoo group daytime sleepiness (difference – 3.0, 95% confidence interval – 5.7 to – 0.3, P= 0.03) and apnoea-hypopnoea index (difference – 6.2, – 12.3 to – 0.1, P=0.05) improved significantly and partners reported less sleep disturbance (difference – 2.8, – 4.7 to – 0.9, P<0.01). There was no effect on the quality of sleep (difference – 0.7, – 2.1 to 0.6, P=0.27). The combined analysis of sleep related outcomes showed a moderate to large effect of didgeridoo playing (difference between summary z scores – 0.78 SD units, – 1.27 to – 0.28, P<0.01). Changes in health related quality of life did not differ

between groups.

Conclusion Regular didgeridoo playing is an effective treatment alternative well accepted by patients with moderate obstructive sleep apnoea syndrome.

Trial registration ISRCTN: 31571714.

Introduction

Snoring and obstructive sleep apnoea syndrome are two highly prevalent sleep disorders caused by collapse of the upper airways.¹²⁵ The most effective intervention for these disorders is continuous positive airway pressure therapy, which reduces day-time sleepiness' and the risk of cardiovascular morbidity and mortality in the most severely affected patients (apnoeahypopnoea index (measured as episodes per hour) >30).² For

moderately affected patients (apnoea-hypopnoea index 15-30) who complain about snoring and daytime sleepiness, however, continuous positive airway pressure therapy may not be suitable and other effective interventions are needed.¹⁶⁷

AS, a didgeridoo instructor, reported that he and some of his students experienced reduced daytime sleepiness and snoring after practising with this instrument for several months. In one person, the apnoea-hypopnoea index decreased from 17 to 2. This might be due to training of the muscles of the upper airways, which control airway dilation and wall stiffening.* is "We tested the hypothesis that training of the upper airways by didgeridoo playing reduces daytime sleepiness in moderately affected patients.

Methods

Participants and methods

We included German speaking participants aged ≥ 18 years with growth of the participant and an apnoae-hypopnoca index of 15-30 (determined by a specialist in sleep medicine within the past year). Exclusion criteria were current continuous positive airway pressure therapy, use of drugs that act on the central nervous system (such as benzodiazepines), current or planned intervention for weight rectuction, consumption of ≥ 14 alcoholic drinks a week or ≥ 2 a day, and obesity (body mass index ≥ 30 kg/m²).

We recruited patients at our study centre (Zuercher Hoehenklinik Wald, Wald, Switzerland) and one private practice in Zurich. Physicians at the study centre assessed all potential participants for eligibility. Those willing to participate provided written informed consent. After study enrolment, all patients completed a baseline assessment.

We randomised enrolled patients into an intervention group with didgeridoo training or a control group. We used STATA software (STATA 8.2, College Station, Tx) to generate the randomisation list (ralloc command) with stratification for disease severity (apnoca-hypopnoca index 15-21 or 22-30 and Epworth score <12 or ≥12). The randomisation list was concealed from the recruiting physicians and the didgeridoo instructor in an administrative office otherwise not involved in the study. We used a central telephone service, which the didgeridoo instructor used to obtain group allocation.

Intervention and control

Participants in the intervention group started their didgeridoo training after the instructor received group allocation. The instructor (AS) gave the first individual lesson immediately after randomisation. In the first lesson, participants learnt the lip technique to produce and hold the keynote for 20-30 seconds. In the second lesson (week 2) the instructor explained the concept and

Fig 1 Man playing didgeridoo

technique of circular breathing. Circular breathing is a technique that enables the wind instrumentalist to maintain a sound for long periods of time by inhaling through the nose while maintaining airflow through the instrument, using the checks as bellows. In the third lesson (week 4) the didgeridoo instructor taught the participants his technique to further optimise the complex interaction between the lips, the vocal tract, and circular breathing so that the vibrations in the upper airway are more readily transmitted to the lower airways. If in the fourth lesson, eight weeks after randomisation, the instructor and the participants repeated the basics of didgeridoo playing and made corrections when necessary. Participants had to practise at home for at least 20 minutes on at least five days a week and recorded the days with practice and the practice time (answer options for 0, 20, or 30 minutes).

Participants received a standardised acrylic plastic didgeridoo that was developed by the instructor in collaboration with Creacryl GmbH (Ebmatingen, Zurich, Switzerland, and costs 680 (£43; 594), fig. 1). The didgeridoo is 130 cm long with a diameter of 14 cm and an elliptical embouchure with a diameter of 2.8-3.2 mm. Acrylic didgeridoos are easier for beginners to learn on than conventional wooden diduceridoos.

Participants in the control group remained on a waiting list to start their didgeridoo training after four months. They were not allowed to start didgeridoo playing during these four months.

Outcome measures

Our primary outcome was daytime sleepiness as measured by the Epworth scale, which has been validated in German speaking patients.¹⁷ Scores range from 0 (no daytime sleepiness) to 24, and scores > 11 represent excessive daytime sleepiness.

Secondary outcomes included three additional sleep related outcomes measures: the apnoea-hypopnoea index, the Pittsburgh quality of sleep index, and a partner's rating for sleep disturbonce.

The cardiorespiratory sleep study was performed at the sleep laboratory of the study centre with a computerised system (SleepLab Pro, Jaeger, Hoechberg, Germany), according to the guidelines of the German Society for Sleep Medicine. We

measured airflow using nasal and oral thermistors and a nasal canula with a differential pressure flow sensor. We defined episodes of apnoce as cessation of airflow of > 10 seconds with decrements of blood oxygen saturation of $\geq 4\%$. Hypopnoca was defined as a reduced airflow for at least 10 seconds with decrements of blood oxygen saturation of $\geq 4\%$ or waking, or both. The person who analysed the sleep recordings was blinded to group allocation throughout the trial.

The Pittsburgh quality of sleep index is a self administered questionnaire with 19 items to determine sleep quality, latency, duration, and disturbance within the past four weeks. "In gelobal score ranges from 0 to 21, with higher values representing worse quality of sleep. A score of 25 represents impaired sleep quality. We used a validated German version."

The partners (when present) rated their sleep disturbance by the participants' snoring during the previous seven nights on a visual analogue scale from 0 to 10. The visual analogue scale was similar to a Borg scale and had verbal descriptors for 0 foot disturbed at all 10 severely disturbed, 9 (very, very severely disturbed), and 10 (extremely disturbed). The partners completed the scale independently from the participants and sent it back to the study centre.

Finally, we used the German SF-36 to assess generic health related quality of life. 16

Analysis

We analysed all data on an intention to treat basis. For the primary analysis we compared change scores (differences between baseline and follow-up) between groups using two sample t tests. We also performed an analysis of covariance with the primary and secondary continuous end points at four months after randomisation as the dependent variables and their baseline values, markers of severity of disease (appocahypopnoea index and Epworth score), weight change, and group allocation as independent variables.

We selected the Epsorth scale as our primary outcome but also considered the three other sleep related outcomes (apposehypopnoea index, Pirisburgh quality of sleep index, and partner rating). To provide an overall estimate of the effects of didgeridoo playing on the four outcome measures we used a summary measure described by Schotten." Briefly, for each patient and outcome we calculated a z score (difference of individual change minus overall mean change score/overall SD of change score) and then a summary score as the average of the four z scores. We compared these summary scores between the groups using a two sample trees.

For all analyses, we present 95% confidence intervals and considered P \(\leq 0.05 \) as significant. All statistical analyses were performed with SPSS (12.0.1, Chicago, III).

Results

Figure 2 shows the study flow from screening of potential participants to the final assessment. We included 25 patients from August 2004 to April 2005, all of whom completed the trial. Table 1 shows the participants' characteristics and the base-line values of the outcomes measures. Most patients were men, aged about 50, and had an average apnoca-hypoprotes index of 21 and excessive daytime sleepiness (mean Epworth scores 11.8 in the didgeridoo group and 11.1 in the control group). The Pittsburgh quality of sleep index indicated impaired sleep quality (3.2 and 5.8) and the partners of the study participants on average had severely disturbed sleep (5.6 and 5.5). The SF-36 scores were in the range of the normal population with exception of the mental component and vitality scores, which were lower mental component and vitality scores, which were lower

BMJ Online First burj.com page 1 of 5 page 2 of 5 BMJ Online First burj.com

Beispielstudie

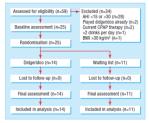


Fig 2 Flow of participants through study

(reference scores of 50 for mental component and 63.3 for vital-

On average, participants in the didgeridoo group practised on 5.9 days a week (SD 0.86, range 4.6-6.9) for 25.3 minutes (3.4). There were no adverse or unexpected events in either group. Table 2 shows the effects of didgeridoo playing on the four sleep related outcomes. The primary outcome (daytime sleepiness as measured by the Epworth scale) improved significantly in the didgeridoo group compared with the control group (difference -3.0 units, 95% confidence interval -5.7 to -0.3, P=0.03). Figure 3 shows the individual responses in daytime sleepiness in the

The quality of sleep did not differ significantly between groups (difference -0.7 units, -2.1 to 0.6, P=0.27), but the

Table 1 Characteristics of participants according to allocation to intervention (didgeridoo) or control. Numbers are means (SD) except for absolute values

	Didgeridoo group (n=14)	Control group (n=11)
Age (years)	49.9 (6.7)	47.0 (8.9)
Men	12	9
Years of snoring	8.7 (6.0)	8.9 (3.5)
Body mass index	25.8 (4.0)	25.9 (2.4)
Systolic blood pressure	133.7 (14.0)	133.3 (14.0)
Diastolic blood pressure	80.9 (7.1)	77.3 (8.4)
Used any medication	3	1
Played wind instrument	0	2
Drinks/week	2.2 (3.1)	2.2 (1.8)
Reason for study participation:		
Snoring	14	10
Intolerance to CPAP therapy	0	1
Apnoea-hypopnoea index	22.3 (5.0)	19.9 (4.7)
Epworth scale	11.8 (3.5)	11.1 (6.4)
Pittsburgh quality of sleep index	5.2 (1.7)	5.8 (2.8)
Partner's rating of sleep disturbance	5.6 (2.4)*	5.5 (2.3)
SF-36:		
Physical component score	52.7 (7.4)	52.7 (7.0)
Mental component score	41.1 (12.1)	44.8 (8.6)
Physical functioning	88.9 (11.3)	92.5 (8.9)
Role physical	76.2 (25.1)	82.5 (20.6)
Bodily pain	79.2 (22.0)	80.9 (29.1)
General health	70.4 (17.1)	69.9 (16.0)
Vitality	48.6 (15.2)	53.0 (11.1)
Social functioning	66.4 (20.6)	69.1 (14.7)
Role emotional	72.2 (27.9)	83.5 (17.4)
Mental health	66.9 (19.5)	68.4 (15.9)

"One participant in the didgeridoo group did not have a partner

BMI Online First bmi.com

Table 2 Effects of intervention on sleep related outcomes

Epworth scale				
At 4 months	7.4 (2.3)	9.6 (6.0)		
Change from	-4.4	-1.4	-3.0 (-5.7 to -0.3),	-2.8 (-5.4 to -0.2),
baseline	(3.7)	(2.6)	P=0.03	P=0.04
Pittsburgh quality	of sleep ind	ex		
At 4 months	4.3 (2.1)	5.6 (2.7)		
Change from	-0.9	-0.2	-0.7 (-2.1 to 0.6),	-0.8 (-2.3 to 0.8),
baseline	(1.6)	(1.7)	P=0.27	P=0.30
Partner rating of	sleep disturb	ance		
At 4 months	2.3 (1.4)	4.8 (2.2)		
Change from	-3.4	-0.6	-2.8 (-4.7 to -0.9),	-2.7 (-4.2 to -1.2),
baseline	(2.4)	(1.9)	P<0.01	P<0.01
Apnoea-hypopno	ea index			
At 4 months	11.6	15.4		
	(8.1)	(9.8)		
Change from	-10.7	-4.5	-6.2 (-12.3 to -0.1),	-6.6 (-13.3 to -0.1),
baseline	(7.7)	(6.9)	P=0.05	P=0.05
*Two sample # fee	ats			

"two sample rests.

*Analysis of covariance with adjustment for severity of disease (apnoea-hypopnoea index and Epworth scale) and weight change during study period.

partners of those in the didgeridoo group reported less sleep disturbance (difference -2.8 units. -4.7 to -0.9, P < 0.01). We also observed a significant effect of didgeridoo playing on apnoea-hypopnoea (difference for apnoea-hypopnoea index 6.2. - 12.3 to -0.1, P=0.05). Didgeridoo playing did not have a significant effect on any domain of the SF-36. Adjustment for severity of the condition and weight change during the study did not alter the results substantially for any outcome.

Figure 4 shows the combined analysis of the four sleep related outcomes. The summary z scores differed by -0.78 (-1.27 to -0.28, P<0.01), favouring the didgeridoo over the

Discussion

In this randomised controlled trial we found that four months of training of the upper airways by didgeridoo playing reduces daytime sleepiness in people with snoring and obstructive sleep apnoea syndrome. The reduction of the apnoea-hypopnoea index by didgeridoo playing indicated that the collapsibility of the upper airways decreased. In addition, the partners of participants in the didgeridoo group were much less disturbed in their

Earlier studies about the effects of electrical neurostimulation or training of the respiratory muscles showed no improvement

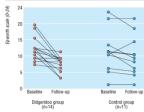


Fig 3 Individual responses in daytime sleepiness, showing direction of change

page 3 of 5

Research

in daytime sleepiness11 or the apnoea-hypopnoea index18 or were limited by the lack of a control group.10 Our results are the first to show that training the upper airways significantly improves sleep related outcomes. The larger effects we observed may be due to the longer duration of our intervention and the training of the whole vocal tract instead of only single muscles.

Comparison with continuous positive airway pressure

A meta-analysis of trials evaluating continuous positive airway pressure therapy in patients with moderate to severe obstructive sleep apnoea syndrome showed an average effect of -3.9 units on the Epworth scale.4 The minimum important difference on this scale for severely affected patients is around 4 units. 10 In our trial, the mean change score in the didgeridoo group was -4.4 units and the difference between the intervention and control group was -3.0 units. Thus the effect of didgeridoo playing seems to be slightly smaller than with CPAP therapy. However, we expected smaller effects because our patients were only moderately affected so that results are likely to be less pronounced.

One of the challenges in the treatment of sleep disorders is poor compliance.1 20 Thus new treatments not only need to be effective but also be ones that people are motivated enough to use. Didgeridoo playing seems to meet these requirements. Participants were highly motivated during the trial and practised, on average, on almost six days a week, which was even more than the protocol asked for.

Strengths and limitations of trial

Strengths of our trial include the long duration of the training so that effects could develop. Also, we blinded outcomes assessors when possible (sleep studies) and controlled for confounding by restricting the study sample to non-obese patients with little alcohol and drug consumption. A limitation is that those in the control group were simply put on a waiting list because a sham intervention for didgeridoo playing would be difficult. A control intervention such as playing a recorder would have been an option, but we would not be able to exclude effects on the upper airways and compliance might be poor. Another limitation is that the sample size was small. We conducted a proof of concept study and larger trials with more diverse study populations are needed to provide more precise estimates of the treatment effect

of upper airway training.

In conclusion, didgeridoo playing improved daytime sleepiness in patients with moderate snoring and obstructive sleep appoea and reduced sleep disturbance in their partners. Larger trials are needed to confirm our preliminary findings, but our results may give hope to the many people with moderate obstructive sleep apnoea syndrome and snoring, as well as to

Snoring and obstructive sleep apnoea syndrome are highly prevalent sleep disorders associated with substantial morbidity and mortality and rising costs

Continuous positive airways pressure therapy can reduce daytime sleepiness, but compliance with this treatment is

Training or electrostimulation of the muscles of the upper airway might reduce collapsibility of the upper airways

Regular playing of a didgeridoo reduces daytime sleepiness and snoring in people with moderate obstructive sleep apnoea syndrome and also improves the sleep quality of

Severity of disease, expressed by the apnoea-hypopnoca index, is also substantially reduced after four months of didgeridoo playing

Contributors: MAP, AS, and OB designed and organised the study. AS assigned the intervention, CLC, OB, MH, and AZ collected the data. MAP supervised data collection, analysed data, and wrote the first draft. AS, CLC, AZ, MH, and OB critically reviewed the manuscript, and MAP and OB prepared the final version. OB is guarantor.

Funding: Zurich Lung Association, Zuercher Hoehenklinik Wald. Competing interests: AS is a professional didgeridoo instructor and teaches t'ai chi and qi gong.

Ethical approval: Ethics committee of the University Hospital of Zurich.

- Caples SM, Gami AS, Somers VK, Obstructive sleep apnea, Ann Intern Med
- Capies SM, Gami AS, Somers VK, Obstructive sleep aprox. Ann Intern Mol. 2012;12:1507.

 Single 12:1512.

 Sing

- treatment of obstructive sleep apnea. Sleep 2004;27:134-8. Pepin JL, Krieger J, Rodenstein D, Cornette A, Sforza E, Delguste P, et al. Effective com-
- uce during the first 3 months of continuous positive airway pressare. A European pective study of 121 patients. Am J. Respir Crit Care Met 1999;160:11249. In EA, Burnett T. Cornell S, Ludiov CL. The effect of neuromuscular stimulation of
- the genioglossus on the hypopharyngeal airway. Laryngusospe 2002;112:351-6. Randerath WJ, Galetke W, Domanski U, Weitkunat R, Ruhle KH. Tongue-muscle train

z scores (95% CI) Epworth scale -0.85 (-1.62 to -0.08) P=0.03 Pittsburgh sleep quality inder -0.45 (-1.28 to 0.38) P=0.27 -0.79 (-1.57 to -0.01) P=0.05 Apnoea-hypopnoea index Partner rating sleep disturbano -1.5 -1.0 -0.5 0.5

Fig 4 Effects of didgeridoo playing on measure of sleep related outcomes

page 4 of 5 BMI Online First bmi.com

"Wie lese ich eine Studie in 10 Minuten"

Grundlegender Aufbau eines Studienberichts (papers):

IMRaD Schema

- Weitere Strukturierungen
- CONSORT Statement für Interventionsstudien (RCTs)
- STROBE Statement für Beobachtungsstudien (epidemiologische Studien: Kohortenstudie, Fall-Kontroll-Studie u. Querschnittstudie)
- STARD Statement für diagnostische Studien

	ltem number	Descriptor	Reported on page number
Title and abstract	1	How participants were allocated to interventions (eg, "random allocation", "randomised", or "randomly assigned").	
Introduction			
Background	2	Scientific background and explanation of rationale.	
Methods			
Participants	3	Eligibility criteria for participants and the settings and locations where the data were collected.	
Interventions	4	Precise details of the interventions intended for each group and how and when they were actually administered.	
Objectives	5	Specific objectives and hypotheses.	
Outcomes	6	Clearly defined primary and secondary outcome measures and, when applicable, any methods used to enhance the quality of measurements (eg, multiple observations, training of assessors, &c).	
Sample size Randomisation	7	How sample size was determined and, when applicable, explanation of any interim analyses and stopping rules.	
Sequence generation	8	Method used to generate the random allocation sequence, including details of any restriction (eg, blocking, stratification).	
Allocation concealment	9	Method used to implement the random allocation sequence (eg. numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned.	
Implementation	10	Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups.	
Blinding (masking)	11	Whether or not participants, those administering the interventions, and those assessing the outcomes were aware of group assignment. If not, how the success of masking was assessed.	
Statistical methods	12	Statistical methods used to compare groups for primary outcome(s); methods for additional analyses, such as subgroup analyses and adjusted analyses.	
Results			
Participant flow	13	Flow of participants through each stage (a diagram is strongly recommended). Specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analysed for the primary outcome. Describe protocol deviations from study as planned, together with reasons.	
Recruitment	14	Dates defining the periods of recruitment and follow-up.	
Baseline data	15	Baseline demographic and clinical characteristics of each group.	
Numbers analysed	16	Number of participants (denominator) in each group included in each analysis and whether the analysis was by "intention to treat". State the results in absolute numbers when feasible (eg, 10/20, not 50%).	
Outcomes and estimation	17	For each primary and secondary outcome, a summary of results for each group, and the estimated effect size and its precision (eq. 95% CI).	
Ancillary analyses	18	Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those prespecified and those exploratory.	
Adverse events	19	All important adverse events or side-effects in each intervention group.	
Discussion			
Interpretation	20	Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision and the dangers associated with multiplicity of analyses and outcomes.	
Generalisability	21	Generalisability (external validity) of the trial findings.	
Overall evidence	22	General interpretation of the results in the context of current evidence.	

Checklist of Items to include when reporting a randomised trial

Otology & Neurotology 00:00-00 © 2013, Otology & Neurotology, Inc.

First European Multicenter Results With a New Transcutaneous Bone Conduction Hearing Implant System: Short-Term Safety and Efficacy

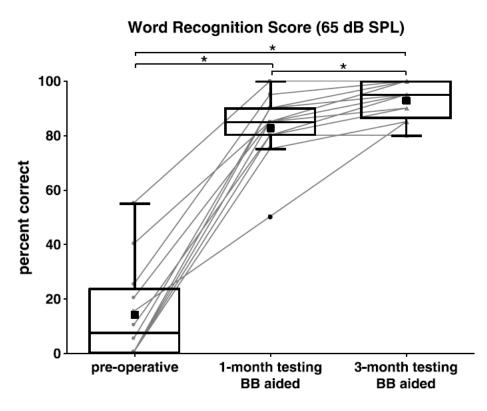
*Georg Sprinzl, †Thomas Lenarz, ‡Arneborg Ernst, §Rudolf Hagen, *Astrid Wolf-Magele, †Hamidreza Mojallal, ‡Ingo Todt, §Robert Mlynski, and ||Mario D. Wolframm

*Department of Otorhinolaryngology, Medical University Innsbruck, Austria; †Department of Otorhinolaryngology, Hannover Medical School, Germany; ‡Clinic for Ears, Nose, and Throat, Unfallkrankenhaus Berlin, Germany; §Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Clinic Würzburg, Germany; and ||Vibrant MED-EL, Innsbruck, Austria

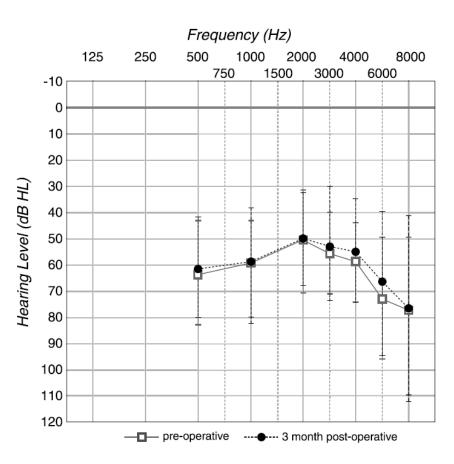
TABLE 1. Demographic data and medical parameter disease factors of the 12 study participants

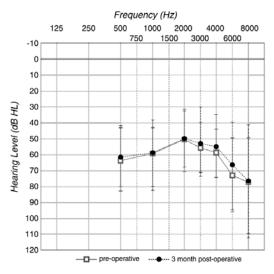
Demographics				Disease factors and medical history						
Subject no.	Age at surgery	Sex	Study site	Implanted ear	No. previous ear surgeries	Duration of HL (yr)	Type of HL	Etiology	PTA ₄ BC implanted ear (dB HL)	PTA ₄ AC implanted ear (dB HL)
1	69	M	Berlin	R	2	60	CHL	Cholesteatoma	5	45
2	69	F	Berlin	R	4	60	CHL	Cholesteatoma	19	46
3	44	F	Berlin	R	2	9	Mixed	Otosclerosis	35	50
4	28	M	Hannover	R	2	15	CHL	COM	6	30
5	65	F	Hannover	R	1	2	CHL	Glomus tumor	6	66
6	65	F	Hannover	L	1	1	Mixed	Chronic mastoiditis	14	53
7	63	F	Hannover	L	3	22	Mixed	COM	18	67
8	35	M	Würzburg	R	5	35	CHL	Cholesteatoma	8	49
9	20	F	Innsbruck	L	2	20	CHL	Atresia auris	11	73
10	19	F	Innsbruck	R	2	19	Mixed	Cholesteatoma	21	61
11	28	F	Innsbruck	R	0	28	Mixed	Atresia auris	25	93
12	27	F	Innsbruck	R	1	27	CHL	Atresia auris	15	73

Study Design


The study was a prospective, single-subject repeated-measures design, in which each subject served as his/her own control. Performance on audiometric tests preoperatively was compared with the aided 3 month postoperative condition using the Bonebridge. This type of design has been applied frequently to the evaluation of implantable hearing devices in multicenter clinical trials (35–37). It minimizes the effect of variability inherent to the population to the evaluation of treatment outcomes. Standardized evaluation methods were used to assure the reliability of the data across different investigational centers.

Statistical analyses were performed using IBM SPSS Statistics 19 (IBM, Armonik, NY, USA). One-way repeated-measure ANOVAs with time as factor were performed (significance was accepted at $p \le 0.05$) and followed by post hoc pairwise comparisons to examine significant differences between the single test intervals. For each ANOVA, Mauchly's test of sphericity was applied. If sphericity could not be assumed, a Greenhouse-Geisser correction was used as part to the ANOVA. P-values of the pairwise comparisons were adjusted with the Holm-Sidak method. Box-Whisker Plots represent the whole data set. Whiskers extend to the maximum value within 1.5 times the interquartile range (IQR) above the third quartile or the minimum value within 1.5 times the IQR below the first quartile. Values outside this range are considered to be outliers, depicted as individual dots. Tukey box-whisker plots were generated using GraphPad Prism 5 (http://www.graphpad.com).




FIG. 3. Word recognition scores in quiet (Freiburger monosyllables) for the implanted ear: preoperative, 1-month postoperative and 3-months postoperative. Both postoperative scores are significantly improved from preoperative scores (p < 0.001) and from each other (p = 0.010), n = 12, BB = Bonebridge.

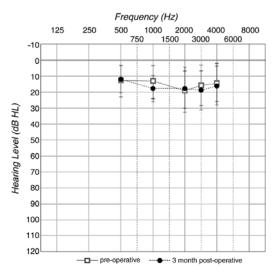


FIG. 5. Mean air conduction thresholds for the implanted ear: preoperative unaided testing compared with 3-month postoperative tests. Error bars represent T 1 SD (n = 12).

FIG. 5. Mean air conduction thresholds for the implanted ear: preoperative unaided testing compared with 3-month postoperative tests. Error bars represent T 1 SD (n = 12).

FIG. 6. Mean bone conduction thresholds for the implanted ear: preoperative unaided testing compared with 3-month postoperative tests. Error bars represent T 1 SD (n = 12).

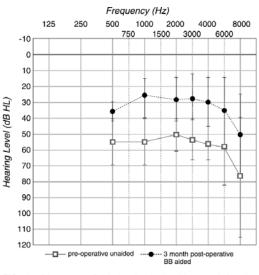


FIG. 7. Mean soundfield thresholds (warble tones) for the implanted ear: preoperative unaided testing compared with 3-month postoperative aided tests. Error bars represent \pm 1 SD (n = 12), BB = Bonebridge.

TABLE 2. F statistics and p values from analysis of variance of audiometric tests (preoperative, 1-month postoperative and 3-month postoperative; n = 12)

	500	Hz	1 k	Hz	2 1	Hz	3 1	Нz	4 1	kHz	6 k	Hz	8 1	кНz
	$F_{(2,22)}$	p	$F_{(2,22)}$	p	$F_{(2,22)}$	p	$F_{(2,22)}$	p	$F_{(2,22)}$	p	$F_{(2,22)}$	p	$F_{(2,22)}$	p
Air conduction (Fig. 5) Bone conduction (Fig. 6)	0.394 0.919	0.68 0.41	0.555 1.00	0.58 0.38	0.681 1.16	0.52 0.33	0.723 1.61	0.50 0.22	1.00 1.46	0.38 0.25	0.726	0.50	0.032	0.97
Soundfield (Fig. 7)	14.7	< 0.001	48.1	< 0.001		< 0.001		< 0.001	61.8	< 0.001	28.7	< 0.001	5.00	0.036

Arzneimittelstudie

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Placebo-Controlled Trial of Cytisine for Smoking Cessation

Robert West, Ph.D., Witold Zatonski, M.D., Magdalena Cedzynska, M.A., Dorota Lewandowska, Ph.D., M.D., Joanna Pazik, Ph.D., M.D., Paul Aveyard, Ph.D., M.D., and John Stapleton, M.Sc.

Arzneimittelstudie

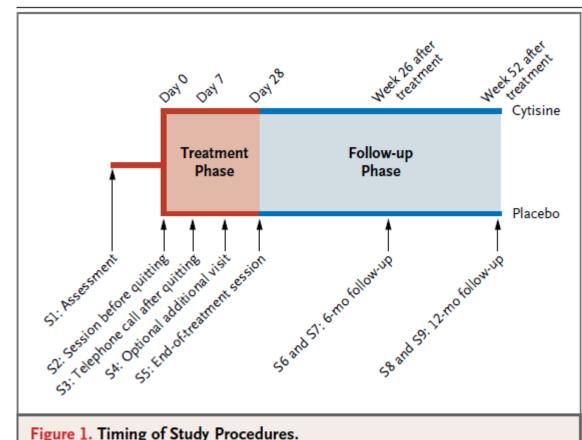


Figure 1. Timing of Study Procedures.

Session numbers are indicated by S1 through S9. Sessions 3, 6, and 8 were telephone sessions. The others were clinic visits.

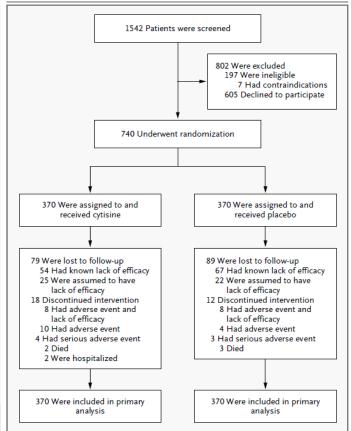


Figure 2. Numbers of Patients Who Were Enrolled in the Study and Included in the Primary Analysis.

The patients lost to follow-up included some patients who discontinued the intervention or who had a serious adverse event.

Table 1. Characteristics of the Study Participants.*		
Characteristic	Cytisine (N = 370)	Placebo (N = 370)
Male sex — no. (%)	183 (49.5)	161 (43.5)
Age — yr	47.8±12.6	48.5±12.6
Married — no. (%)†	190 (51.4)	207 (56.1)
Employment involving manual labor — no. (%)‡	196 (54.3)	178 (50.0)
Tried to stop smoking previously — no. (%)	307 (83.0)	301 (81.4)
No. of cigarettes smoked daily	23.0±8.7	22.5±9.6
Carbon monoxide in exhaled breath — ppm	19.2±8.7	18.2±9.0
Duration of smoking — yr	28.1±11.6	28.6±11.7
FTND score§	6.3±2.1	6.1±2.2
Beck Depression Inventory score	10.5±7.5	10.7±7.9

Table 2. Effect of Cytisine on Smoking Cessation.*							
Outcome	Cytisine (N=370)	Placebo (N = 370)	Percentage-Point Difference (95% CI)	Relative Rate (95% CI)†			
	percent ('number)					
Primary outcome: abstinence for 12 mo	8.4 (31)	2.4 (9)	6.0 (2.7-9.2);	3.4 (1.7-7.1)			
Abstinence for 6 mo	10.0 (37)	3.5 (13)	6.5 (2.9-10.1);	2.9 (1.5-5.3)			
Point prevalence at 12 mo	13.2 (49)	7.3 (27)	5.9 (1.6–10.3)§	1.8 (1.2–2.8)			

Table 3. Adverse Events Reported by 10 or More Study Participants.*						
Event	Cytisine (N = 370)	Placebo (N = 370)	Percentage-Point Difference (95% CI)†	Relative Rate (95% CI)‡		
	percent (r	number)				
Any gastrointestinal event	13.8 (51)	8.1 (30)	5.7 (1.2 to 10.2)§	1.7 (1.1 to 2.6)		
Upper abdominal pain	3.8 (14)	3.0 (11)	0.8 (-1.8 to 3.4)	1.3 (0.6 to 2.8)		
Nausea	3.8 (14)	2.7 (10)	1.1 (-1.5 to 3.6)	1.4 (0.6 to 3.1)		
Dyspepsia	2.4 (9)	1.1 (4)	1.4 (-0.5 to 3.2)	2.2 (0.7 to 7.2)		
Dry mouth	2.2 (8)	0.5 (2)	1.6 (0 to 3.3)	4.0 (0.9 to 18.7)		
Any psychiatric event	4.6 (17)	3.2 (12)	1.4 (-1.4 to 4.2)	1.4 (0.7 to 2.9)		
Dizziness	2.2 (8)	1.1 (4)	1.1 (-0.7 to 2.9)	2.0 (0.6 to 6.6)		
Somnolence	1.6 (6)	1.1 (4)	0.5 (-1.1 to 2.2)	1.5 (0.4 to 5.3)		
Any nervous system event	2.7 (10)	2.4 (9)	0.3 (-2.0 to 2.6)	1.1 (0.5 to 2.7)		
Headache	1.9 (7)	2.2 (8)	-0.3 (-2.3 to 1.8)	0.9 (0.3 to 2.4)		
Skin and subcutaneous tissue	1.6 (6)	1.4 (5)	0.3 (-1.5 to 2.0)	1.2 (0.4 to 3.9)		

Arzneimittelstudie

STATISTICAL ANALYSIS

With the use of previous trial data as a guide, we estimated that we would need to enroll 740 participants (370 in each group) to detect a between-group difference of 6 percentage points (6% vs. 12%) for the primary outcome, with 80% power and at an alpha level of 0.05.

The analyses of outcomes were based on the intention-to-treat principle, with treatment considered to have failed in participants who were lost to follow-up.21 The absolute percentage-point difference between participants who met the criteria for abstinence in the two groups was tested with the use of Fisher's exact test. The relative rate of abstinence (the percentage of patients in the cytisine group who met the abstinence criteria divided by the percentage in the placebo group) was also calculated. The 95% confidence interval was calculated for all measures. The relative rates and percentage-point differences were calculated for adverse events reported by 10 or more participants. Logistic regression was used to examine efficacy, with adjustment for baseline characteristics.

Deskriptive Statistik

Hanno Ulmer

hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Deskriptive Statistik, Merkmalstypen

DEFINITION 2.1

Qualitative Daten

Bei qualitativen Variablen werden die Individuen bestimmten Kategorien zugeordnet, z.B. {rot, grün, blau}, {0, A, B, AB} oder {männlich, weiblich}. Synonyme für "qualitativ" sind kategoriell, kategorial oder diskret. Auch die Bezeichnung Faktor oder Faktorvariable ist gebräuchlich für eine qualitative Variable.

DEFINITION 2.2

Quantitative Daten

Quantitative Variablen können nur numerische Werte annehmen. Sie heißen deshalb auch numerische oder stetige Daten.

DEFINITION 2.3

Zähldaten

Zähldaten sind spezielle diskrete Daten, die zählen, wie oft ein Ereignis aufgetreten ist. Zähldaten können folglich die Werte 0, 1, 2, ... annehmen.

Beispieldaten, BMJ 2005

Patient	Geschlecht (in Jahren)	Alter	Körpergröße (in m)	Behandlungsgruppe	Epworth-Index
1	Mann	45	1,74	Kontrollgruppe	11
2	Frau	41	1,70	Didgeridoo	11
3	Mann	41	1,80	Kontrollgruppe	5
4	Mann	39	1,79	Didgeridoo	8
5	Mann	33	1,80	Kontrollgruppe	1
6	Frau	55	1,67	Didgeridoo	9
7	Frau	50	1,65	Kontrollgruppe	10
8	Frau	65	1,64	Kontrollgruppe	11
9	Mann	43	1,76	Didgeridoo	7
10	Mann	59	1,85	Didgeridoo	9

Tabelle 2.1: Daten der ersten 10 Patienten der Didgeridoo-Studie.

Variable	Datentyp	Kategorien
Geschlecht	binär	Mann / Frau
Alter (in Jahren)	stetig	
Körpergröße (in m)	stetig	
Behandlungsgruppe	binär	Didgeridoo / Kontrolle
Epworth-Index	approximativ stetig	

Tabelle 2.2: Datentypen einiger Variablen der Didgeridoo-Studie.

Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial Milo A Puhan, Alex Suarez, Christian Lo Cascio, Alfred Zahn, Markus Heitz, Otto Braendli, BMJ 2005

Deskription qualitativer Daten

	abs. Häufigkeit	rel. Häufigkeit (%)
Didgeridoo	14	56
Kontrollgruppe	11	44
Total	25	100

Tabelle 2.4: Anzahl Patienten in den Behandlungsgruppen der Didgeridoo-Studie.



Abbildung 2.2: Kuchendiagramm der Behandlungsgruppenhäufigkeiten.

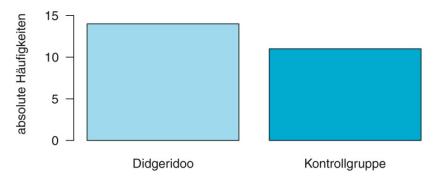


Abbildung 2.1: Balkendiagramm der Behandlungsgruppenhäufigkeiten.

	Didgeridoo	Kontrollgruppe	Total
Frauen	12	9	21
Männer	2	2	4
Total	14	11	25

Tabelle 2.5: Anzahl Patienten in den Behandlungsgruppen der Didgeridoo-Studie nach Geschled

Intervall	(30, 35]	(35, 40]	(40, 45]	(45, 50]	(50, 55]	(55, 60]	(60, 65]
Anzahl Werte im Intervall	1	2	7	4	6	4	1
Relativer Anteil	4 %	8 %	28 %	16 %	24 %	16 %	4 %

Tabelle 2.3: Verteilung des Alters in der Didgeridoo-Studie.

DEFINITION 2.14

Histogramm

Mit einem Histogramm wird die Verteilung von stetigen Daten visualisiert. Dazu wird der Bereich der Daten in gleiche, anliegende aber sich nicht überlappende Intervalle (Zellen, Klassen) zerlegt. Dann zählt man die Anzahl der Beobachtungen in jedem Intervall und erstellt ein Balkendiagramm.

Deskription quantitativer Daten

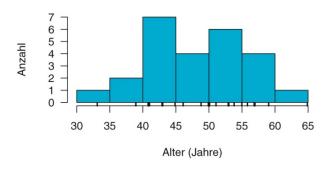


Abbildung 2.5: Histogramm des Alters der Patienten der Didgeridoo-Studie.

DEFINITION 2.5

Normalverteilung

Die drei Haupteigenschaften der Normalverteilung sind:

- Symmetrie, d. h., Abweichungen nach links und nach rechts vom Zentrum sind gleich häufig und gleich groß.
- "Große" Abweichungen vom Zentrum sind selten.
- Die Normalverteilung lässt sich durch lediglich zwei Parameter eindeutig beschreiben: den Mittelwert und die Standardabweichung.

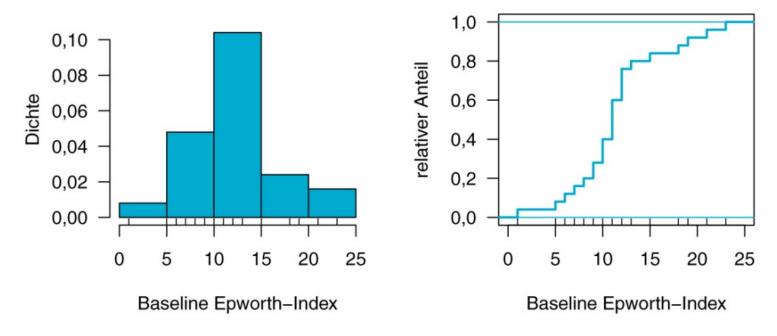


Abbildung 2.10: Histogramm und empirische Verteilungsfunktion der Baseline Epworth-Index Daten.

Statistische Kennwerte

DEFINITION 2.6

Mittelwert

Der Mittelwert (engl. mean) von n Beobachtungen $x_1, x_2, ..., x_n$ ist

$$\overline{x} = (x_1 + x_2 + \ldots + x_n) / n = \frac{1}{n} \sum_{i=1}^n x_i.$$

DEFINITION 2.7

Perzentil

Eine Zahl p_k heißt k-tes Perzentil (k bezeichnet hierbei eine ganze Zahl zwischen 1 und 99) einer Variablen, wenn mindestens k% der Beobachtungen der Variable kleiner oder gleich p_k und mindestens (100 – k)% größer oder gleich p_k sind.

DEFINITION 2.12

Interquartilsabstand

Der Interquartilsabstand (engl. interquartile range, IQR) ist die Differenz zwischen dem 75. und dem 25. Perzentil.

Statistische Kennwerte

DEFINITION 2.13

Spannweite

Die Spannweite (engl. range) ist die Differenz zwischen Maximum und Minimum und gibt den Bereich an, in dem die Daten liegen.

DEFINITION 2.8 Varianz

Die Varianz (engl. variance) ist die mittlere quadratische Abweichung der Beobachtungen vom Mittelwert:

$$s^{2} = \left\{ (x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2} \right\} / (n - 1)$$
$$= \frac{1}{n - 1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

DEFINITION 2.9 Standardabweichung

Die Standardabweichung (SD) ist die Wurzel aus der Varianz:

$$s = \sqrt{s^2}$$
.

Streuung

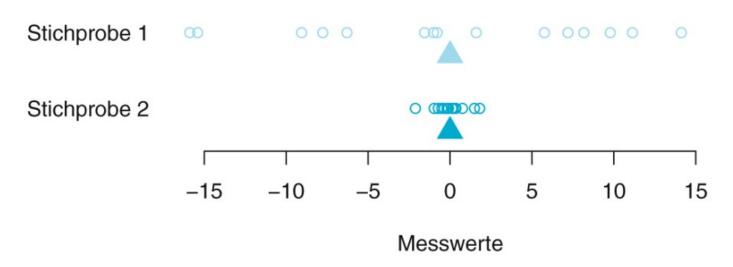


Abbildung 2.4: Zwei Stichproben mit demselben Mittelwert, aber verschiedener Streuung.

DEFINITION 2.11 Variationskoeffizient

Der Variationskoeffizient (CV) ist der Quotient von Standardabweichung und Mittelwert.

$$CV = s/\overline{x}$$

Boxplot

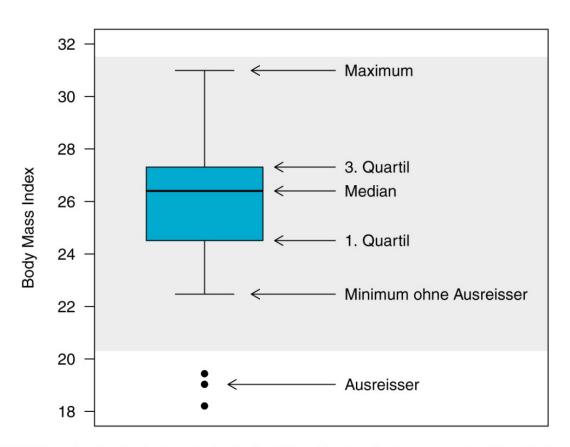


Abbildung 2.7: Boxplot des Body-Mass-Index in der Didgeridoo-Studie. Das graue Band beschreibt den Bereich 1. Quartil $-1,5 \cdot IQR$ bis zum 3. Quartil $+1,5 \cdot IQR$.

Vergleiche mit Boxplot

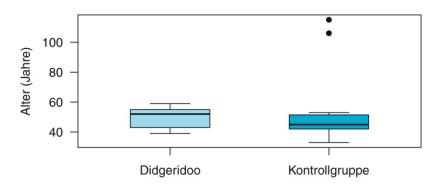


Abbildung 2.9: Boxplots des Alters aller Patienten nach Behandlungsgruppe mit den fehlerhaften Daten aus Abbildung 2.3 rechts.

DEFINITION 2.15

Boxplot

Die "Box" im Boxplot (engl. box and whiskers plot) gibt den Bereich vom 25. zum 75. Perzentil an, der horizontale Strich in der Box den Median. Die Stäbe (engl. whiskers), die aus der Box herausragen, sind nicht einheitlich definiert. Bei einfachen Boxplots reichen sie zum Minimum und zum Maximum. Eine verbreitete Definition, die auf John W. Tukey zurückgeht, besteht darin, die Länge der Whiskers auf maximal das 1,5-fache der Boxlänge zu beschränken. Beobachtungen außerhalb dieses Bereichs werden als "Ausreißer" gekennzeichnet.

Deskriptive Vergleiche Didgeridoo Studie

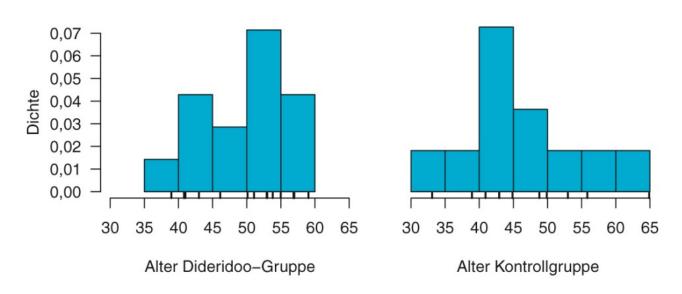


Abbildung 2.6: Histogramme des Alters aller Patienten in der Didgeridoo-Studie, nach Behandlungsgruppe.

Deskriptive Vergleiche Didgeridoo Studie

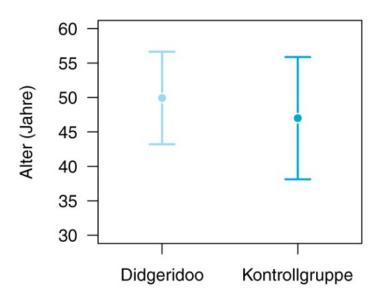


Abbildung 2.12: Fehlerbalken-Diagramm des Alters nach Behandlungsgruppe (Mittelwert \pm Standardabweichung).

Deskriptive Vergleiche Didgeridoo Studie

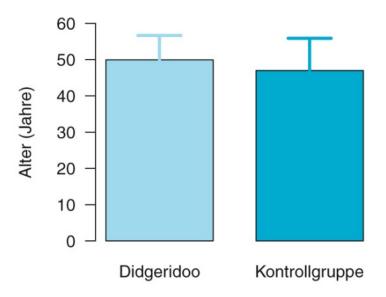


Abbildung 2.11: Balkendiagramme des Alters nach Behandlungsgruppe (Mittelwert \pm Standardabweichung).

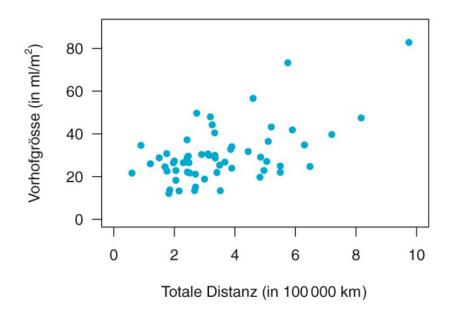


Abbildung 6.1: Streudiagramm der Größe des linken Vorhofs gegen die totale Distanz.

Variable	n	Min.	Median	\overline{x}	Max.	S
Totale Distanz (in 100 000 km)	61	0,6	3,1	3,4	9,8	1,8
Vorhofgröße (in ml/m^2)	61	12,1	27,1	30,2	82,8	13,0

Tabelle 6.1: Deskriptive Statistiken in der Rennfahrerstudie.

Korrelationskoeffizient

DEFINITION 6.1

Pearson-Korrelation

Die Korrelation einer Stichprobe von n Paaren von Beobachtungen (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) ist

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{s_{xy}}{s_x \cdot s_y},$$
(6.1)

wobei

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} \quad \text{und} \quad s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2}$$
 (6.2)

die geschätzten Standardabweichungen der Variablen \boldsymbol{x} und \boldsymbol{y} bezeichnen, und

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

die geschätzte Kovarianz zwischen beiden Variablen.

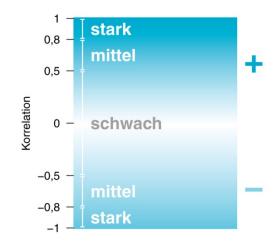


Abbildung 6.2: Die Bewertung von Korrelationskoeffizienten.

Korrelationskoeffizient

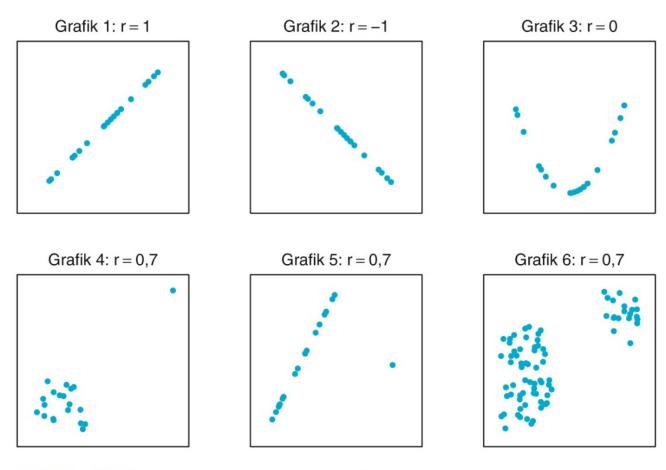


Abbildung 6.3: Illustration von speziellen Korrelationen.

Regression

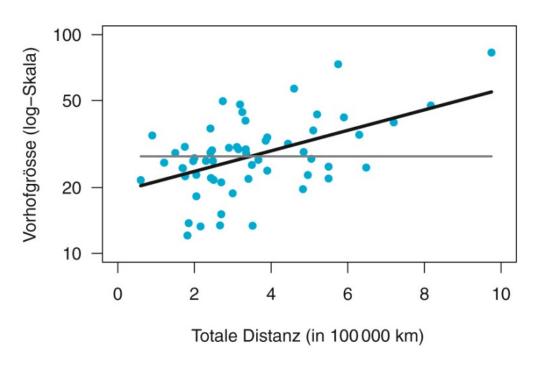
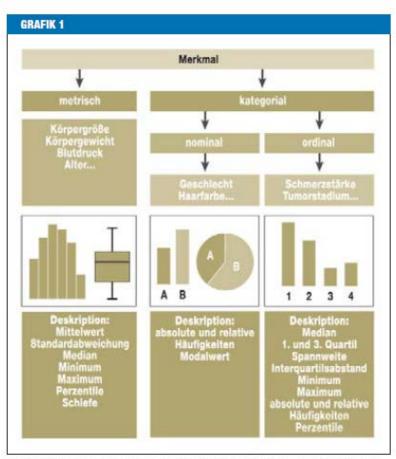


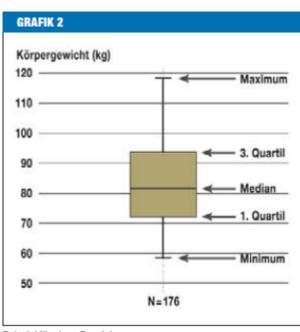
Abbildung 6.9: Streudiagramm der logarithmierten Größe des linken Vorhofs gegen die totale Distanz mit Regressionsgerade.



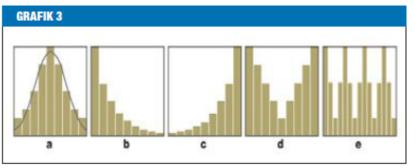
Deskriptive Statistik

Qualitative Merkmale	Quantitative Merkmale normalverteilt	beliebig verteilt
n,%	Arithmetischer Mittelwert	Median
	Standardabweichung	Perzentile
Kreis-, Balkendiagramm	Histogramm	Boxplot
Beispiele:		
Geschlecht, Ansprechen auf Therapie, etc.	Blutdruck	CRP, GGT Schweregrade

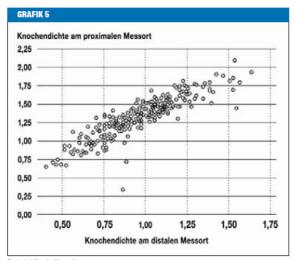
Merkmalstypen und statistische Maßzahlen, Grafiken

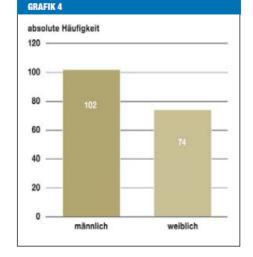


Schema der Merkmalstypen und geeignete statistische Maßzahlen zur deskriptiven Darstellung


Table 1. Baseline Characteristics of Patients in the Intention-to-Treat Population.*					
Characteristic	Capecitabine (N=1004)	Fluorouracil plus Levcovorin (N=983)			
Sex (%)					
Male	54	54			
Female	46	46			
Age (yr)					
Median	62	63			
Range	25-80	22-82			
Age group (%)					
<70 yr	81	79			
≥70 yr	19	21			
ECOG performance score (%)					
0	85	85			
1	15	15			
Nodal status — (%)					
N1	69	71			
N2	31	29			
Tumor stage (%) †					
T1 or 2	10	10			
T3	76	76			
T4	14	14			
Carcinoembryonic antigen level (%)					
≤ULN	83	85			
>ULN	9	7			
Missing data	8	8			

Statistische Grafiken





Beispiel für einen Boxplot

Beispiele für Verteilungsformen in Histogrammen a) Normalverteilung (symmetrisch), b) linksgipflig (= rechtsschief); c) rechtsgipflig (= linksschief); d) zweigipflig (symmetrisch); e) mehrgipflig

Beispiel für ein Streudiagramm

Deskriptive Statistik

KASTEN

 $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ Mittelwert

 $Var = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ Varianz

Standardabweichung $s = \sqrt{Var}$

 $g = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{c^3}$ Schiefe

 $\widetilde{X} = X_{(n+1)/2}$ Median falls n ungerade

 $\tilde{x} = \frac{x(n/2) + x(1+n/2)}{2}$ falls n gerade

 $R = x_{max} - x_{min}$ Spannweite

mit

= Stichprobenumfang beziehungsweise Fallzahl

= Messwert für i-tes Stichprobenelement beziehungsweise i-ten Fall, wobei i=1,....,n

x(i) = bezeichnet den i-ten Wert in der aufsteigend geordneten Reihe der Messwerte, wobei i=1,....,n

Median oder Mittelwert?

St. Lange¹, R. Bender²

¹ Abteilung für Medizinische Informatik, Biometrie und Epidemiologie der Ruhr-Universität Bochum

Tab. 2 Übersetzungen (deutsch – englisch)

(arithmetischer) Mittelwert (arithmetic) mean Median Median Ausreißer Outlier Stichprobenumfang Sample size schiefe Verteilung Skewed distribution zensierte Daten Censored data

Variabilitätsmaße

St. Lange¹, R. Bender²

² Fakultät für Gesundheitswis

¹ Abteilung für Medizinische I **Tab.1** Übersetzungen (deutsch – englisch)

Spannweite range

Standardabweichung standard deviation

Varianz variance

Standardfehler des Mittelwertes standard error of the mean

Variabilitätsmaß measure of variability

Spannweite range

Interquartilsabstand interquartile range Summe der Abweichungsquadrate sum of squares

² Fakultät für Gesundheitswissenschaften, AG Epidemiologie und medizinische Statistik, Universität Bielefeld

Mittelwert vs. Median - Beispiel

Wann verwendet man den Mittelwert, wann den Median?

Daten: 12 14 16 18 20

Mittelwert:
$$\frac{12+14+16+18+20}{5} = 16$$

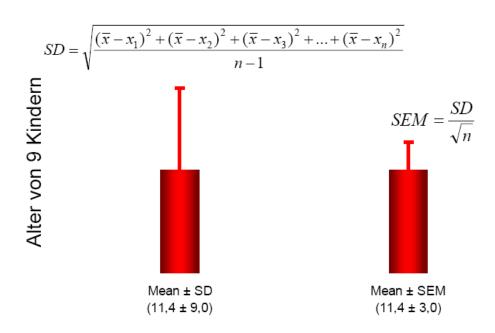
Median: mittlere Wert der Rangliste: 16

→ Bei Vorliegen einer Normalverteilung sind Mittelwert und Median gleich. Daten mit einem Ausreißer:12 14 16 18 20

Mittelwert:
$$\frac{12+14+16+18+20+40}{6} = 20$$

Median: mittlerer Wert der Rangliste – bei einer geraden Anzahl an Werten wird der Mittelwert der beiden mittleren Werte berechnet $\rightarrow \frac{16+18}{2} = 17$

40


- → Bei Vorliegen von nicht normalverteilten Daten sind Mittelwert und Median nicht gleich.
- → Median ist robust gegen Ausreißer, Mittelwert nicht.

Standardabweichung oder Standardfehler?

 Standardfehler beschreibt nicht die Daten, sondern gibt die Genauigkeit des Mittelwerts als Schätzwerts an.

SD > SEM

Übung: Statistische Maßzahlen

- Berechnen Sie bitte den arithmetischen:
 - Mittelwert
 - Median
 - Varianz
 - Standardabweichung
 - Spannweite
 - Interquartilsabstand
 - und den Variationskoeffizient

Erstellen Sie Histogramme und Boxplots für:

17.11.2010

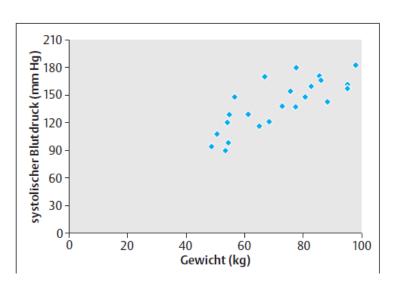
Punktezahlen von 20 Studenten
 6,3,7,5,6,4,4,6,7,3,5,9,6,4,2,7,5,5,8,6

Anzahl der Angestellten in 20 Apotheken
 2,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,6,8,10,15

Krankheitstage von 20 Personen
 0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,3,3,15,76

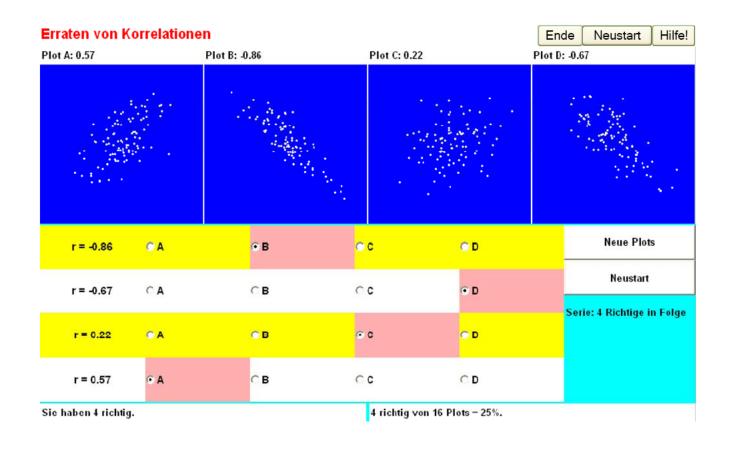
17.11.2010

Inferenzstatistik III: Zusammenhänge, Korrelations- und Regressionsanalysen



(Lineare) Regression/Korrelation

St. Lange¹, R. Bender²

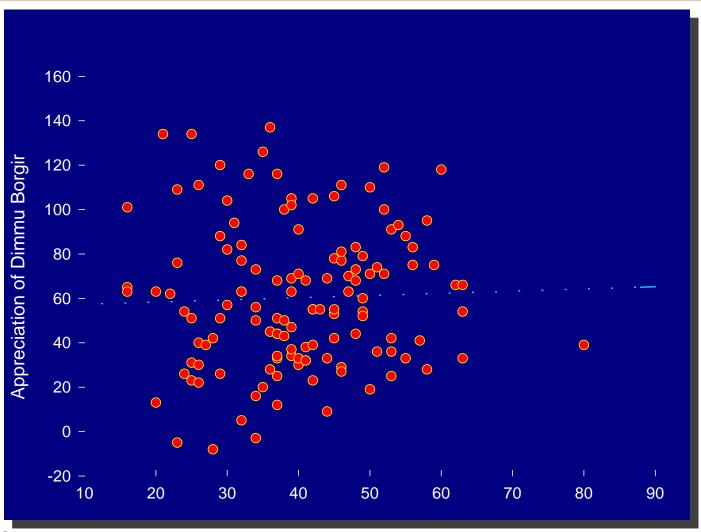

- ¹ Abteilung für Medizinische Informatik, Biometrie und Epidemiologie der Ruhr-Universität Bochum
- ² Fakultät für Gesundheitswissenschaften, AG Epidemiologie und medizinische Statistik, Universität Bielefeld

Neben der univariaten, das heißt auf ein einzelnes Merkmal bezogenen Analyse von Daten aus einer klinischen Studie, ist man häufig daran interessiert, den Zusammenhang zwischen zwei (bivariat) oder mehreren (multivariat) Variablen zu betrachten. Bei Betrachtung von zwei quantitativen Merkmalen bietet sich als anschauliche, graphische Darstellungsweise die Punktwolke an, bei der die Wertepaare durch einen Punkt in einem Koordinatensystem abgebildet werden (Abb. 1). Damit wird sofort visuell erfassbar, ob überhaupt ein Zusammenhang besteht, und wenn ja, wie stark er ist. Tab. 1 enthält die Werte für den systolischen Blutdruck und das Körpergewicht von 24 zufällig ausgewählten Patienten einer dermatologischen Ambulanz. Abb. 1 zeigt die dazugehörige Punktwolke, die einen recht deutlichen Zusammenhang zwischen den beiden Merkmalen erkennen lässt.

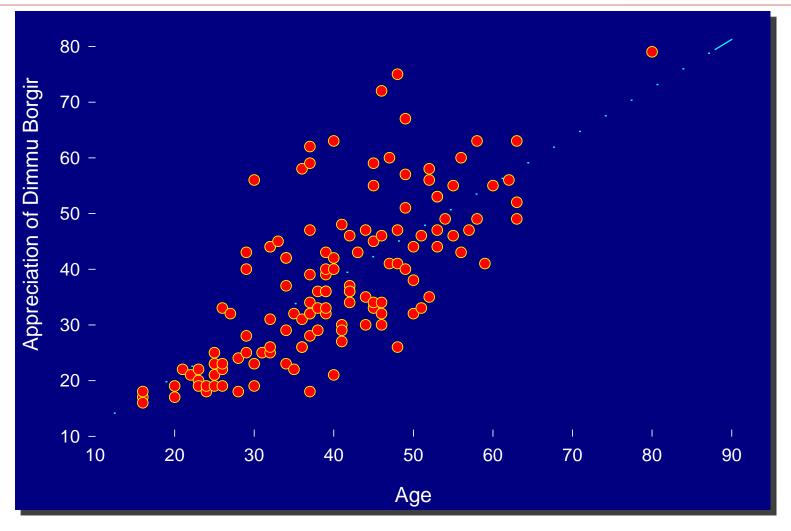
Inferenzstatistik III: Zusammenhänge, Korrelations- und Regressionsanalysen

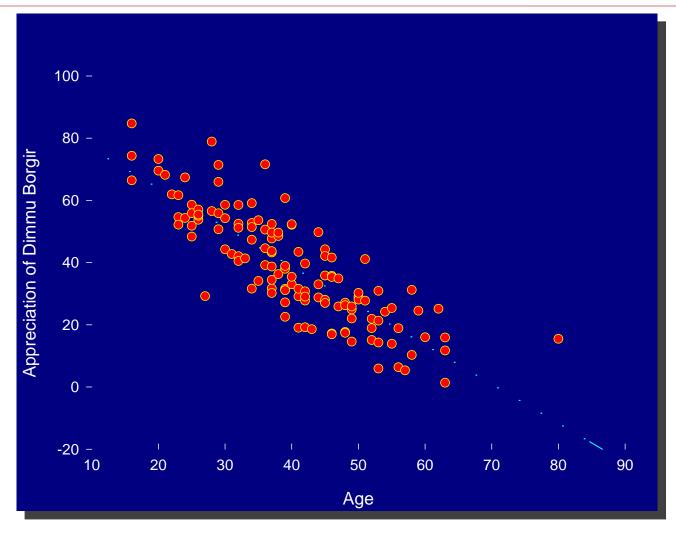
Correlation

- Measuring Relationships
 - Scatterplots
 - Covariance
 - Pearson's Correlation Coefficient
- Nonparametric measures
 - Spearman's Rho
 - Kendall's Tau
- Interpreting Correlations
 - Causality

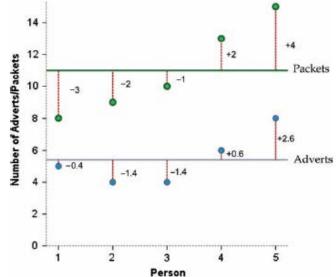

What is a Correlation?

- In statistics, **dependence** or **association** is any statistical relationship, whether causal or not, between two random variables or bivariate data.
 - This means that the marginal distribution of a random variable A is different from the distribution of A knowing B
- Correlation is a way of measuring the relationship between two metric or ordinal variables
- Correlation is a measure of association
- In **common usage**, it most often refers to the extent to which two variables have a **linear relationship** with each other
- (Linear) correlation => Dependence
- But: Dependence ≠> (Linear) correlation


Very small relationship


Positive relationship

Negative relationship


Measuring (linear) relationships

- We need to see whether as one variable increases, the other increases, decreases or stays the same.
- This can be done by calculating the covariance.
 - We look at how much each score deviates from the mean.
 - If both variables deviate from the mean by the same amount, they are likely to be related.

Example:

Participant:	1	2	3	4	5	Mean	s
Adverts Watched	5	4	4	6	8	5.4	1.67
Packets Bought	8	9	10	13	15	11.0	2.92

Covariance

- The variance tells us by how much scores deviate from the mean for a single variable.
- It is closely linked to the sum of squares.

Variance =
$$\frac{\sum (x_i - \overline{x})^2}{N-1}$$
$$= \frac{\sum (x_i - \overline{x})(x_i - \overline{x})}{N-1}$$

 Covariance is similar – it tells us by how much scores on two variables differ from their respective means.

$$Cov(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

Example

Participant:	1	2	3	4	5	Mean	S
Adverts Watched	5	4	4	6	8	5.4	1.67
Packets Bought	8	9	10	13	15	11.0	2.92

$$cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

$$= \frac{(-0.4)(-3) + (-1.4)(-2) + (-1.4)(-1) + (0.6)(2) + (2.6)(4)}{4}$$

$$= \frac{1.2 + 2.8 + 1.4 + 1.2 + 10.4}{4}$$

$$= \frac{17}{4}$$

$$= 4.25$$

Pearson correlation coefficient (1)

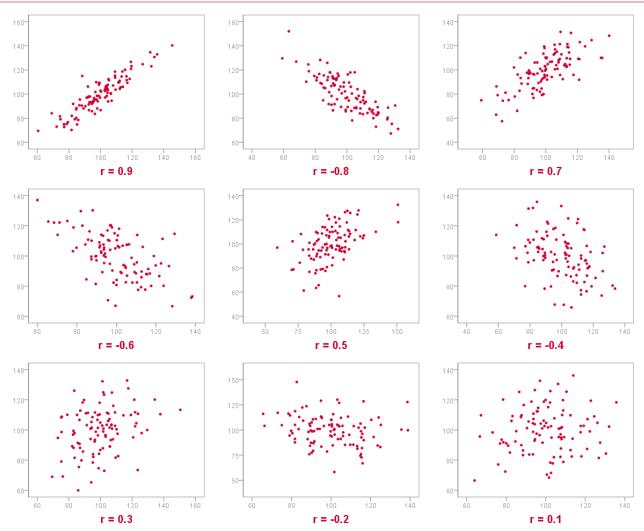
- It depends upon the units of measurement.
 - E.g. The Covariance of two variables measured in Miles might be 4.25,
 but if the same scores are converted to Km, the Covariance is 11.
- One solution: standardise it!
 - Divide by the standard deviations of both variables.
- The standardised version of Covariance is known as the Pearson correlation coefficient.

$$r = \frac{Cov_{xy}}{s_x s_y}$$

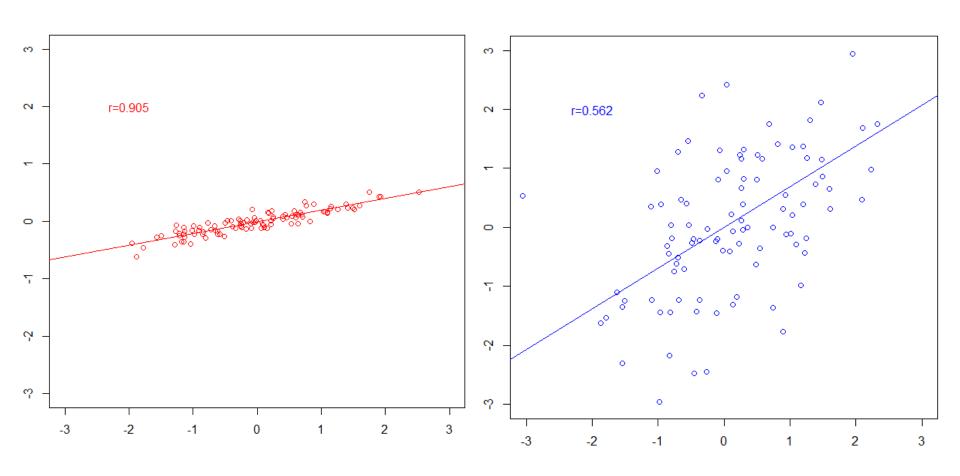
$$= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(N-1)s_x s_y}$$

In the example:

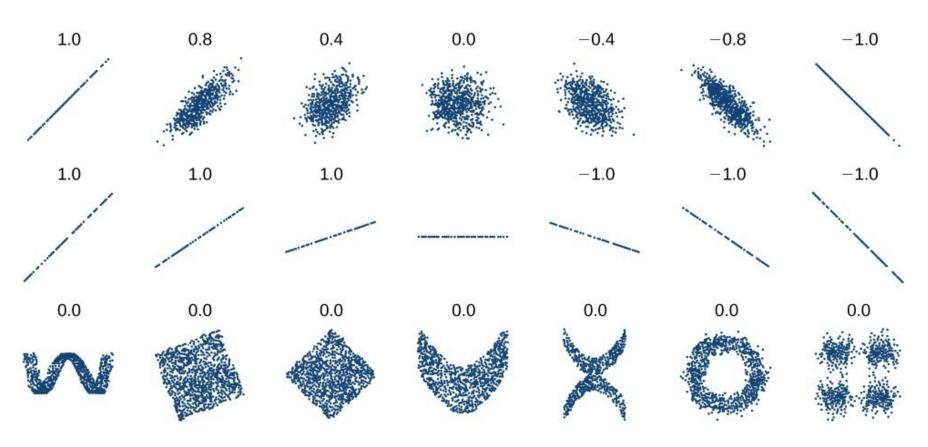
$$r = \frac{Cov_{xy}}{s_x s_y}$$
$$= \frac{4.25}{1.67 \times 2.92}$$
$$= .87$$


Pearson Correlation Coefficient (2)

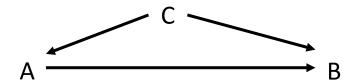
- Measure of linear dependence
- It varies between -1 (perfect negative) and +1 (perfect positive)
 - 0 = no relationship
- It is an effect size
 - ±.1 = small effect
 - $\pm .3 = medium effect$
 - ±.5 = large effect
- Coefficient of determination, r^2
 - By squaring the value of r you get the proportion of variance in one variable shared by the other.
- In our example: 0.87², i.e. 75.7% of the variability in "Packets bought" can be explained by "Adverts watched"


Examples

Steepness of slope ≠ Strength of correlation!



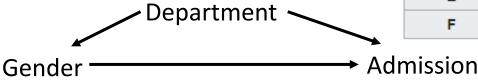
Non-linear dependencies


Pearson correlation coefficient not meaningful for non-linear dependencies!

Correlation/Association and causality (1)

- Direction of causality:
 - Correlation coefficients say nothing about which variable causes the other to change
- The third-variable problem:
 - in any correlation, causality between two variables cannot be automatically assumed because there may be other measured or unmeasured variables ("confounders") affecting the results.

Correlation/Association and causality (2)

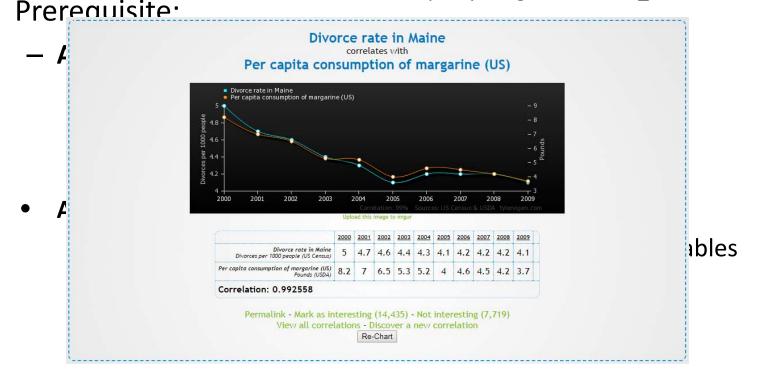


- Due to confounders, the estimated of the effect can be distorted so severely that even the estimate shows even in the opposite direction than the true effect
- Simpson's paradox
- Appleton et al. (The American Statistician 1996;50(4))

UC Berkeley gender bias

	Applicants	Admitted		
Men	8442	44%		
Women	4321	35%		

Department	Me	n	Women		
Department	Applicants	Admitted	Applicants	Admitted	
Α	825	62%	108	82%	
В	560	63%	25	68%	
С	325	37%	593	34%	
D	417	33%	375	35%	
E	191	28%	393	24%	
F	373	6%	341	7%	



Correlation/Association and causality (3)

 In many experiments/studies, the main focus is on establishing causal relationships rather than mere associations

http://tylervigen.com/view_correlation?id=1703

Nonparametric Correlation

Spearman's Rho

Pearson's correlation on the ranked data

Kendall's Tau

- Better than Spearman's for small samples
- Rho and Tau also appropriate for ordinal data if the assumed dependence is monotonic

Participant:	1	2	3	4	5	Mean	s
Adverts Watched	5	4	4	6	8	5.4	1.67
Packets Bought	8	9	10	13	15	11.0	2.92

R = 0.871 Monotonic

Rho = 0.667

Nonmonotonic

Conducting Correlation Analysis

Check assumptions/bias

Reporting the results of a correlation analysis

TABLE 7.2 An example of reporting a table of correlations

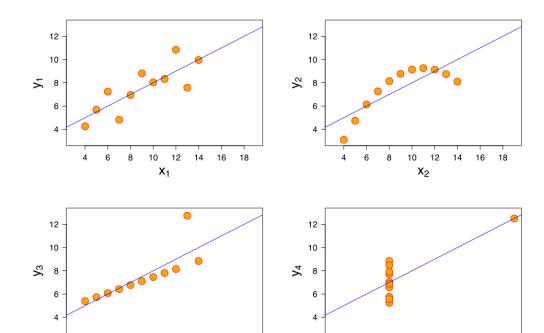
	Exam Performance	Exam Anxiety	Revision Time
Exam Performance	1	44*** [564,301]	.40*** [.245,.524]
Exam Anxiety	103	1	71*** [863,492]
Revision Time	103	103	1

ns = not significant (p > .05), * p < .05, ** p < .01, *** p < .001. BCa bootstrap 95% CIs reported in brackets.

Exercise

Analyse the data in Data_correlation.csv!

Importance of looking at a set of data graphically



10 12 14

16 18

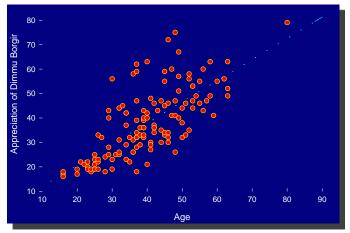
Anscombe's quartet

- All four sets (x₁ and y₁, x₂ and y₂, x₃ and y₃, x₄ and y₄) are identical when examined using only summary statsticis
- Mean of x: 9, Variance of x: 11
- Mean of y: 7.5, Variance of y: 4.125
- Correlation between x and y: 0.816
- Coefficient of determination: 0.67
- Linear regression line: y=3+0.5*x
- However, they vary considerably when graphed

10 12 14

 x_3

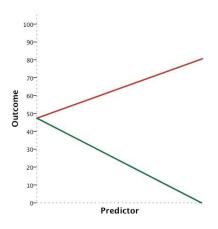
16


(Simple) linear regression (1)

A procedure to predict the value of one variable Y from another variable X

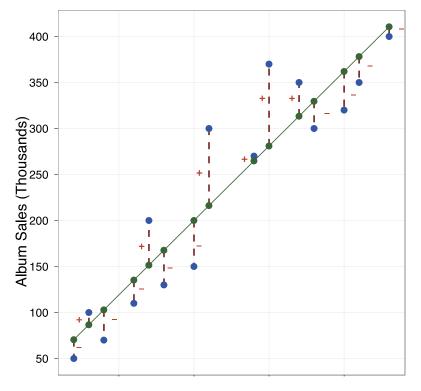
- X independent variable, predictor
- Y dependent variable, outcome
- Because there is only one predictor -> simple linear regression
- More than one predictor -> multiple linear regression
- It is a hypothetical model of the relationship between two variables.

The model used is a linear one


(Simple) linear regression (2)

Therefore, we describe the relationship using the equation of a straight line

$$Y_i = b_0 + b_1 X_i + \varepsilon_i$$


- *b*₁
 - Regression coefficient for the predictor
 - Gradient (slope) of the regression line
 - Direction/Strength of Relationship
- b_0
 - Intercept (value of Y when X = 0)
 - Point at which the regression line crosses the Y-axis (ordinate)

The Method of Least Squares (1)

 From all possible lines choose the one which minimizes the sum of the squared residuals (differences between the prediction from the line and the true y-value)

s (or residuals) between the line and the actual data

Advertising Budget (£Thousands)

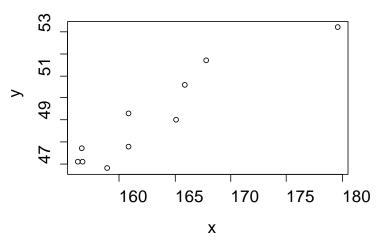
The Method of Least Squares (2)

$$\sum_{i=1}^n (y_i - (eta_0 + eta_1 x_i))^2 o ext{Min!}$$

Coefficients b_0 and b_1 of this minimation task are given by:

$$egin{align} b_1 &= rac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = rac{s_{x,y}}{s_{x,x}} \ b_0 &= \overline{y} - b_1 \overline{x} \end{aligned}$$

b₁ can also be formulated with the Pearson correlation coefficient:


$$b_1 = r_{xy} * \frac{s_y}{s_x}$$

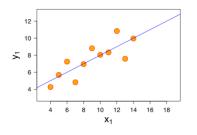
Example

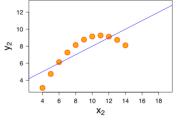
PERSON i	1	2	3	4	5	6	7	8	9	10
KÖRPERGRÖSSE a	c156.3	158.9	160.8	179.6	156.6	165.1	165.9	156.7	167.8	160.8
$\operatorname{RINGGR\"{O}SSE} y$	47.1	46.8	49.3	53.2	47.7	49.0	50.6	47.1	51.7	47.8

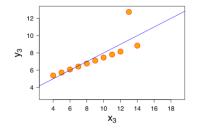
- Calculate variances of x and y, covariance and the Pearson correlation coefficient!
- Calculate the regression line according to the least squares approach!
- Calculate the variance of the residuals (ŷ-y)!

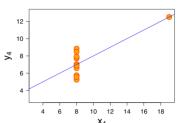
Example

$$\bar{x} = 162.85$$
 $\bar{y} = 49.03$


PERSON i	1	2	3	4	5	6	7	8	9	10
$(x_i - \bar{x})$	-6.55	-3.95	-2.05	16.75	-6.25	2.25	3.05	-6.15	4.95	-2.05
$(y_i - \bar{y})$	-1.93	-2.23	0.27	4.17	-1.33	-0.03	1.57	-1.93	2.67	-1.23
$(x_i - \bar{x}) \cdot (y_i - \bar{y})$	12.64	8.81	-0.55	69.85	8.31	-0.07	4.79	11.87	13.22	2.52
$(x_i - ar{x})^2$	42.90	15.60	4.20	280.56	39.06	5.06	9.30	37.82	24.50	4.20
b ₁ :	\sum	$\frac{\sum_{i=1}^{n} (x_i)}{\sum_{i=1}^{n} (x_i)}$	$\frac{(x_i-ar{x})}{(x_i-ar{x})}$	$rac{\cdot (y_i -}{-ar{x})^2}$	$\frac{(\bar{y})}{(\bar{y})} =$	$\frac{131}{463}$	$\frac{.39}{.2} =$	= 0.28	36	
b ₀ :			49.03	-0.28	$36 \cdot 16$	62.85	= 2.8	34		

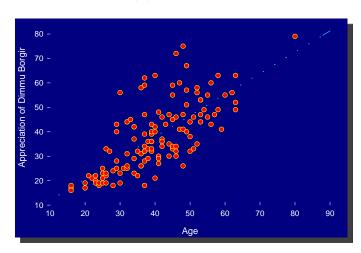

12.04.2019


How Good is the model?

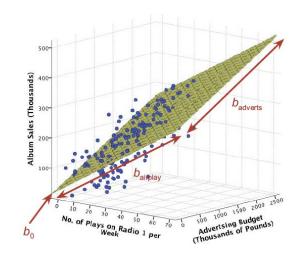


- The regression line is only a model based on the data.
- This model might not reflect reality.
- We need some way of testing how well the model fits the observed data.
 - Graphically: Deviation from linearity?
 - Diagnostics of residuals
 - Coefficient of determination via decomposition of variance

Exercise: Album_Sales.sav


- A record company boss was interested in predicting album sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and Downloads) in the week after release
- Predictor variable:
 - The amount (in £s) spent promoting the album before release.

Analyse the data and perform a regression analysis (in SPSS)!


What is Multiple Regression?

- (Simple) Linear Regression is a model to predict the value of one variable from another
- Multiple Regression is a natural extension of this model:
 - We use it to predict values of an outcome from several predictors
 - It is a hypothetical model of the relationship between several variables

Simple regression - line

Multiple regression with 2 predictors - plane

Catterplot of the relationship between album sales, advertising budget and

Multiple regression: an example

- A record company boss was interested in predicting album sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and Downloads) in the week after release
- Predictor variables
 - The amount (in £s) spent promoting the album before release (see last lecture)
 - Number of plays on the radio (new variable)

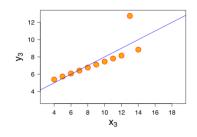
Multiple Regression as an Equation

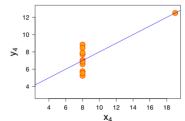
 With multiple regression the relationship is described using a variation of the equation of a straight line

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + \varepsilon_i$$

- b₀ is the intercept
 - the intercept is the value of the Y variable when all $X_s = 0$
- b_1 is the regression coefficient for variable 1
- b_2 is the regression coefficient for variable 2
- b_n is the regression coefficient for n^{th} variable.

• ε_i is the residual (error term)


Model fit (1)



- As in the simple linear regression model
- $SS_{tot} = SS_{reg} + SS_{res}$
- Coefficient of determination, R²

$$R^2 = \frac{SS_{reg}}{SS_{tot}}$$

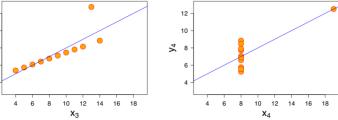
- The proportion of variance accounted for by the model.
- R² equals the square of the Pearson correlation coefficient between y and ŷ
- $0 \le R^2 \le 1$
- Diagnostics of residuals:
 - Standardized residuals
- Influential cases:
 - Cook's distance

Model fit (2)

Diagnostics of residuals:

- Standardized residuals
- In an average sample, 95% of standardized residuals should lie between \pm 2.
- 99% of standardized residuals should lie between \pm 2.5.

8 %

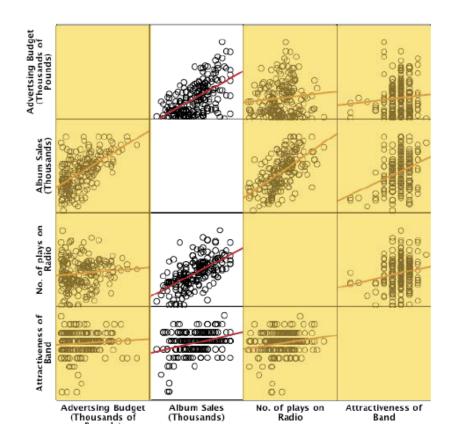

 Outliers: any case for which the absolute value of the standardized residual is 3 or more, is likely to be an outlier.

Influential cases:

- Cook's distance
- Measures the influence of a single case on the model as a whole.

Weisberg (1982): absolute values greater than 1 may be cause for

concern


Which variables to include?

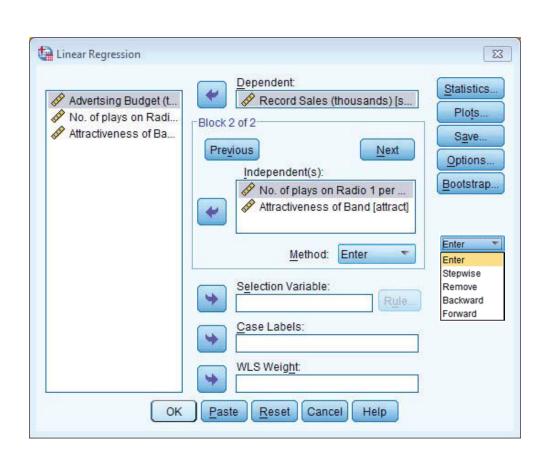
• First step: scatterplot

FIGURE 8.14

Matrix scatterplot of the relationships between advertising budget, airplay, and attractiveness of the band and album sales

Method 1: Forced entry

- All variables are entered into the model simultaneously
- The results obtained depend on the variables entered into the model
 - It is important, therefore, to have good theoretical reasons for including a particular variable


Method 2: Stepwise entry

- Variables are entered into the model based on mathematical criteria
- Computer selects variables in steps.
- Step 1: Choose the predictor that can explain the most variance in the outcome variable.
- Step 2: Having selected the 1st predictor, a second one is chosen from the remaining predictors.
- The semi-partial correlation is used as a criterion for selection.
 - The semi-partial correlation measures the relationship between two variables controlling for the effect that a third variable has on only one of the others
 - It measures the unique contribution of a predictor to explaining the variance of the outcome
- Drawbacks of stepwise entry:
 - Rely on a mathematical criterion.
 - Variable selection may depend upon only slight differences in the semi-partial correlation
 - These slight numerical differences can lead to major theoretical differences
 - Should be used only for exploration

Doing Multiple Regression in SPSS (1)

Linear Regression: Statistics
Regression Coefficients → Model fit
✓ Estimates ✓ R squared change
▼ Confidence intervals ▼ Descriptives
Level(%): 95 Part and partial correlations
Colling with dispersation
_ SSYMMOO MAAAA
Residuals
□ Durbin-Watson
✓ Casewise diagnostics
Outliers outside: 2 standard deviations
○ <u>A</u> II cases
Continue Cancel Help
Continue Cancel Help
✓ Include the covariance matrix
Browse
Export model information to XML file
File
Dataset name:
Create a new dataset Dataset name.
☐ Create coefficient statistics
Coefficient statistics
Confidence Interval: 95 %
Prediction Intervals ■ Standardized DfFit
✓ Leverage values
▼ Cooks ▼ Standardized DfBeta(s)
▼ Ma <u>h</u> alanobis
Distances Influence Statistics
✓ Studentized deleted
S.E. of mean predictions
▼ Adjusted
▼ Standardized
Predicted Values Residuals Seite 13. ✓ Unstandardized
Predicted Values Residuals 26116 13
Linear Regression: Save

Doing Multiple Regression in SPSS (2)

Model Summary^c

Model R		R R Square	Adjusted R R Square Square	Std. Error of the Estimate						
	R				R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
1	.578ª	.335	.331	65.991	.335	99.587	1	198	.000	
2	.815 ^b	.665	.660	47.087	.330	96.447	2	196	.000	1.950

a. Predictors: (Constant), Advertsing Budget (Thousands of Pounds)

b. Predictors: (Constant). Advertsing Budget (Thousands of Pounds). Attractiveness of Band. No. of plays on Radio

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confide	nce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	134.140	7.537		17.799	.000	119.278	149.002
	Advertsing Budget (Thousands of Pounds)	.096	.010	.578	9.979	.000	.077	.115
2	(Constant)	-26.613	17.350		-1.534	.127	-60.830	7.604
	Advertsing Budget (Thousands of Pounds)	.085	.007	.511	12.261	.000	.071	.099
	No. of plays on Radio	3.367	.278	.512	12.123	.000	2.820	3.915
	Attractiveness of Band	11.086	2.438	.192	4.548	.000	6.279	15.894

a. Dependent Variable: Album Sales (Thousands)

$$y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

 $y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$ Sales = -26.6 + 0.085adverts + 3367plays + 11.1attractiveness

How to interpret beta values?

Beta values:

- the change in the outcome associated with a unit change in the predictor
- b1= 0.085: as advertising increases by £1, album sales increase by
 0.085 units.
- b2= 3367: each time (per week) a song is played on the radio its sales increase by 3367 units.

Standardised beta values:

- tell us the same but expressed as standard deviations
- $-\beta$ 1= 0.511: As advertising increases by 1 standard deviation, album sales increase by 0.511 of a standard deviation.
- β2= 0.512: When the number of plays on the radio increases by 1 SD its sales increase by 0.512 standard deviations.

Reporting the model

TABLE 8.2 Linear model of predictors of album sales, with 95% bias corrected and accelerated confidence intervals reported in parentheses. Confidence intervals and standard errors based on 1000 bootstrap samples

	b	SE B	β	р
Step 1				
Constant	134.14 (120.11, 148.79)	7.95		p = .001
Advertising Budget	0.10 (0.08, 0.11)	0.01	.58	p = .001
Step 2				
Constant	-26.61 (-55.40, 8.60)	16.30		p = .097
Advertising Budget	0.09 (0.07, 0.10)	0.01	.51	p = .001
Plays on BBC Radio 1	3.37 (2.82, 3.91)	0.32	.51	p = .001
Attractiveness	11.09 (6.28, 15.89)	2.22	.19	p = .001

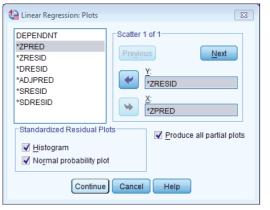
Note. $R^2 = .34$ for Step 1; $\Delta R^2 = .33$ for Step 2 (ps < .001).

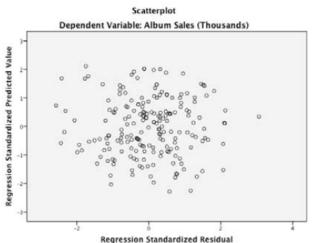
Generalization (1)

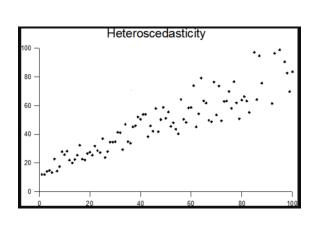
- When we run regression, we hope to be able to generalize the sample model to the entire population
- To do this, several assumptions must be met
- Violating these assumptions stops us generalizing conclusions to our target population
- Variable Type:
 - Outcome must be continuous
 - Predictors can be continuous or dichotomous
- Non-Zero Variance:
 - Predictors must not have zero variance
- Linearity:
 - The relationship we model is, in reality, linear
- Independence:

All values of the outcome should come from a different person

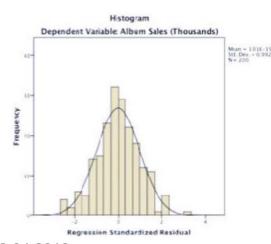
Generalization (2)

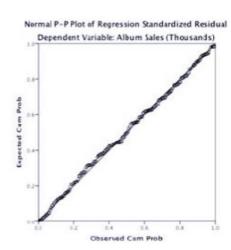

- No Multicollinearity:
 - Predictors must not be highly correlated.
 - Collinearity diagnostics
- Homoscedasticity:
 - For each value of the predictors the variance of the error term should be constant.
 - plot ZRESID against ZPRED
- Independent Errors:
 - For any pair of observations, the error terms should be uncorrelated
- Normally-distributed Errors
 - Normal probability plot


Regression plots



ZResid vs. ZPred


Scatterplot



Homoscedasticity: ZRESID vs. ZPRED

Normality of Errors: Histograms and P-P plots

Collinearity diagnostics

		Co	orrelations		Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF	
1	Advertsing Budget (Thousands of Pounds)	.578	.578	.578	1.000	1.000	
2	Advertsing Budget (Thousands of Pounds)	.578	.659	.507	.986	1.015	
	No. of plays on Radio	.599	.655	.50%	.959	1.043	
	Attractiveness of Band	.326	.309	.188	.963	1.038	

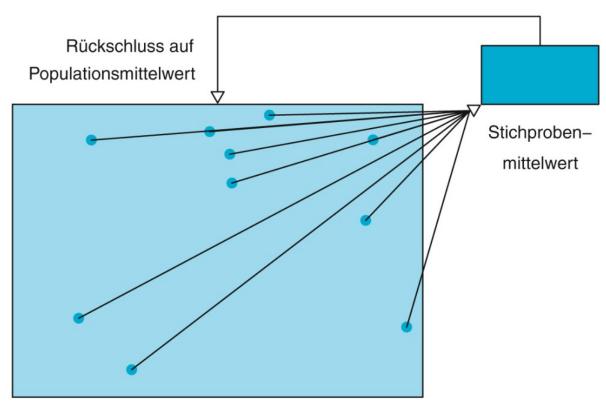
- Tolerance should be more than 0.2 (Menard, 1995)
- VIF should be less than 10 (Myers, 1990)

Signifikanztests und Konfidenzintervalle

Hanno Ulmer

hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck


Statistische Auswertung

- Deskriptive Statistik
- Inferenzstatistik I: Schätzen von Parametern mittels Konfidenzintervallen
- Inferenzstatistik II: Unterschiede, Hypothesenprüfung mittels Signifikanztests
- Inferenzstatistik III: Zusammenhänge, Korrelations- und Regressionsanalysen

Schließende Statistik

Populationsmittelwert

Abbildung 4.1: Das Prinzip des statistischen Schließens.

Ziel der schließenden Statistik

- Aufgrund der Stichprobe Aussagen über die Grundgesamtheit machen
- Von der Stichprobe auf die Grundgesamtheit schließen

Grundgesamtheit

 ist eine entsprechend dem jeweiligen Untersuchungsziel abgegrenzte Menge von Personen oder Objekten, über die man eine Aussage machen will.

Stichprobe

 ist eine (kleinere) Menge von Einheiten, die aus der Grundgesamtheit ausgewählt werden und die man misst oder beobachtet, um aus ihnen Schlüsse mit Gültigkeit auch für den nicht ausgewählten Teil der Grundgesamtheit zu ziehen.

Repräsentativ

 hinsichtlich der für die Untersuchung relevanten Merkmale die Struktur der Grundgesamtheit widerspiegeln

Grundlagen der schließenden Statistik: Verteilungsannahmen

- Gleichverteilung
 - Bsp.: Würfel, Münze
- Binomialverteilung
 - Bsp.: Ziehen mit Zurücklegen
- Poissonverteilung
 - Bsp.: Seltene Ereignisse mit grossen Stichprobenumfängen und konstanter Wahrscheinlichkeit
- Exponentialverteilung
 - Bsp.: Überlebenszeiten
- Gauß- oder Normalverteilung
 - Wichtigste Verteilung siehe die folgenden Folien
- Testverteilungen
 - Chi-Quadrat-Verteilung
 - T-Verteilung
 - F-Verteilung
 - Anwendung bei Signifikanztests und Konfidenzintervallen

Normalverteilung

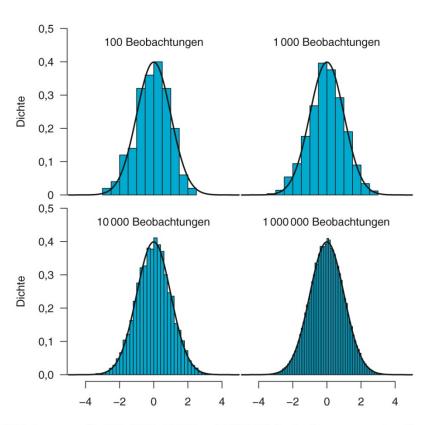
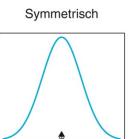


Abbildung 3.4: Histogramme für 100, 1000, 10 000 und 1 000 000 Beobachtungen aus einer Normalverteilung.


Dichtefunktion

DEFINITION 3.6

Dichtefunktion

Liegen von einer stetigen Variablen sehr viele, mit beliebiger Genauigkeit gemessene Beobachtungen vor und beschreiben wir diese Daten mit einem Histogramm, dann könnten wir eine extrem kleine Intervalllänge verwenden. Durch die sehr große Zahl der Beobachtungen ließe sich das Histogramm nicht mehr von einer glatten Kurve unterscheiden. Falls wir auf der y-Achse die Dichte-Skala abtragen, nennt man ein derartiges "Histogramm" eine Wahrscheinlichkeitsdichte.

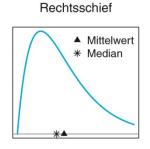


Abbildung 3.5: Dichtefunktion einer symmetrischen, einer rechts- und einer linksschiefen Verteilung.

Gauss- oder Normalverteilung

DEFINITION 3.7

Normalverteilung

Die Dichtefunktion der Normalverteilung lautet:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

Dabei ist $\pi = 3,14159...$ die Kreiszahl π und exp die Exponentialfunktion. Der Erwartungswert μ und die Standardabweichung σ sind die Parameter der Normalverteilung.

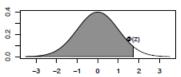
Gauss- oder Normalverteilung

- $-\infty < X < +\infty$
- Parameter Erwartungswert μ und Varianz σ^2

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in R$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$


$$N(\mu, \sigma^2)$$

- tabelliert ist die Standardnormalverteilung N(0,1)
 - N(0,1)...Mittelwert 0, Streuung 1
 - Da eine Transformation möglich ist

$$Z = \frac{X - \mu}{\sigma}$$

Quantile der Standardnormalverteilung

 $\Phi(z) = \mathbb{P}(Z \le z), \ Z \sim \mathcal{N}(0, 1), \text{ für } z < 0 \text{ gilt } \Phi(z) = 1 - \Phi(-z), \text{ Ablesebeispiel } \Phi(1.72) = 0.95728.$

_	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99508	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976

Wichtige Quantile der Standardnormalverteilung

0.5	0.75	0.9	0.95	0.975	0.99	0.995
0	0.67449	1.2816	1.6449	1.9600	2.3263	2.5758

Die 68-95-99.7% Regel:

Für alle Normalverteilungen gilt

- \approx 68% aller Beobachtungen liegen innerhalb einer Standardabweichung um den Mittelwert (zwischen μ σ und μ + σ)
- \approx 95% aller Beobachtungen liegen innerhalb zweier Standardabweichung (zwischen μ 2 σ und μ + 2 σ)
- 99.7% aller Beobachtungen liegen innerhalb dreier Standardabweichung (zwischen μ 3σ und μ + 3σ

Rolle der Normalverteilung

- Viele Messwerte sind annähernd normalverteilt
 - Z.B.: Gewicht einer bestimmten Gruppe
- Manche Messwerte können durch Transformation an eine Normalverteilung angenähert werden
 - Auch diskrete Verteilungen, wie z.B. die Binomialverteilung k\u00f6nnen durch die Normalverteilung approximiert werden
- Wichtige (und günstige) statistisch-theoretische Eigenschaften
- Die Normalverteilung ist Grundlage wichtiger Testverteilungen

Exercise 1

Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585. Will he be admitted to this university?

Z=(585 - 500) / 100 = 0.85

P = [area to the left of z = 0.85] = 0.8023 = 80.23%

Tom scored better than 80.23% of the students who took the test and he will be admitted to this University.

12.04.2019 Seite 151

Exercise 2

The length of life of an instrument produced by a machine has a normal distribution with a mean of 12 months and standard deviation of 2 months. Find the probability that an instrument produced by this machine will last a) less than 7 months.) between 7 and 12 months.

$$P(x < 7) = P(z < -2.5) = 0.0062$$

 $P(7 < x < 12) = P(-2.5 < z < 0) = 0.4938$

12.04.2019 Seite 152

Inferenzstatistik I: Schätzen von Parametern (Konfidenzintervalle)

- Ein Konfidenzintervall ist ein Vertrauensbereich oder eigentlich besser ein Unsicherheitsbereich für die Schätzung eines bestimmten, nicht bekannten Parameters der Grundgesamtheit.
- Konfidenzintervall ein Bereich, in welchem der zu schätzende, unbekannte Parameter der Grundgesamtheit mit Wahrscheinlichkeit (1- α) liegt
- Der interessierende Parameter kann ein Anteil, ein Mittelwert, ein relatives Risiko etc. sein.
- Ein 95%Konfidenzintervall beispielsweise enthält den gesuchten Parameter mit einer Wahrscheinlichkeit von 95%.

Der Weg zum Konfidenzintervall

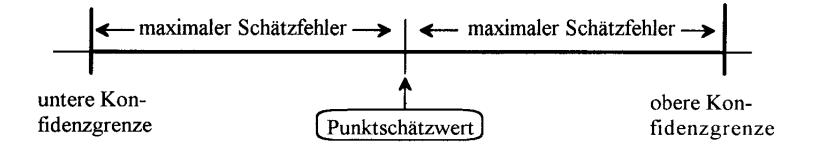
- Punktschätzer aus einer Stichprobe liefert nur einen einzigen Wert
 - Verschiedene Stichproben aus ein und derselben Grundgesamtheit liefern unterschiedliche numerische Werte für den zu schätzenden Parameter
- Berücksichtigung der Standardabweichung der Schätzstatistik
 (= Standardfehler)

DEFINITION 4.1

Standardfehler

Der Standardfehler eines Schätzers einer Kennzahl der Population ist dessen geschätzte Standardabweichung. Der Standardfehler des Mittelwertes ist s/\sqrt{n} , wobei s die Stichprobenstandardabweichung und n der Stichprobenumfang ist. Bei anderen Kennzahlen ergeben sich analoge Formeln für die zugehörigen Standardfehler.

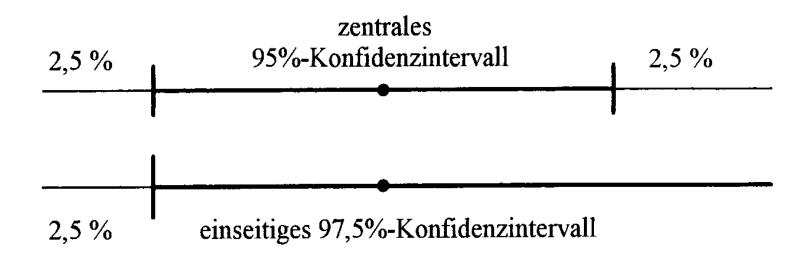
Inferenzstatistik I: Schätzen von Parametern (Konfidenzintervalle)


- Beispiel: Rule of three (adverse Events)
- Keine AE in n=10 Patienten 95% KI (0-30%)
- Keine AE in n=100 Patienten 95% KI (0-3%)
- Keine AE in n=1000 Patienten 95% KI (0-0,3%)

Konfidenzintervalle

"A confidence interval is used when estimating an unknown parameter from sample data. The interval gives a range for the parameter – and a confidence level that the range covers the true value."

Freedman et al. (1991), p. 385.


$(1-\alpha)$ -Konfidenzintervall

- Punktschätzer aus einer Stichprobe liefert nur einen einzigen Wert
 - Verschiedene Stichproben aus ein und derselben Grundgesamtheit liefern unterschiedliche numerische Werte für den zu schätzenden Parameter
- Berücksichtigung der Standardabweichung der Schätzstatistik
- Konfidenzintervall ein Bereich, in welchem der zu schätzende, unbekannte Parameter der Grundgesamtheit mit Wahrscheinlichkeit (1- α) liegt

Zwei- und Einseitige Konfidenzintervalle

$(1-\alpha)$ -Konfidenzintervall

- Einseitig
 - Bestimmung einer Ober- bzw. Untergrenze
- Zweiseitig
 - symmetrisch
- Üblich Werte für α
 - $-\alpha = 0.05, \alpha = 0.01, \alpha = 0.001$
- Grundsätzlich kann für alle statistisch geschätzten Parameter ein Konfidenzintervall berechnet werden
 - Mittelwert, Standardabweichung, Häufigkeit, Korrelationskoeffizient, ...

Konfidenzintervall für den Mittelwert µ

- Bei **unbekannter** Varianz σ^2 , geschätzt durch s²
- Gegeben: $X_1,...,X_N$ unabhängige normalverteilte Zufallsvariable $N(\mu,\sigma^2)$
- Obere bzw. untere Grenze des Konfidenzintervalls

$$G_{oben,unten} = \overline{X} \pm t_{(N-1),1-\alpha/2} s / \sqrt{N}$$

- $t_{(N-1),1-\alpha/2}$...t-Verteilung mit N-1 Freiheitsgraden
- Allgemein gilt: $t_{(N-1),1-\alpha} > z_{1-\alpha}$

$$N = (2t_{1-\alpha/2,N-1}s/L)^2$$

t...Quantil der t - Verteilung

für N - 1 Freiheitsgrade und 1 - α

Konfidenzintervall für einen Anteil π

- Wahrscheinlichkeit π wird durch p aus einer Stichprobe vom Umfang N geschätzt
 - Das Konfidenzintervall ist asymmetrisch
- Approximation durch Normalverteilung
 - Wenn N>30

$$\left[p - z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{N}}, p + z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{N}}\right]$$

- Approximation nach Wald
- Approximation nach Pearson-Clopper

95% Konfidenzintervalle

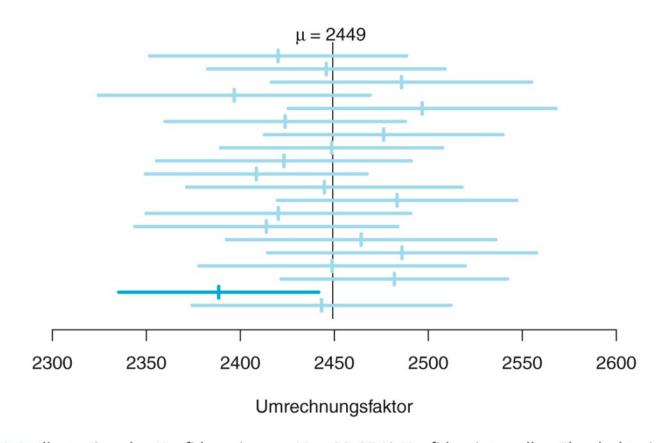
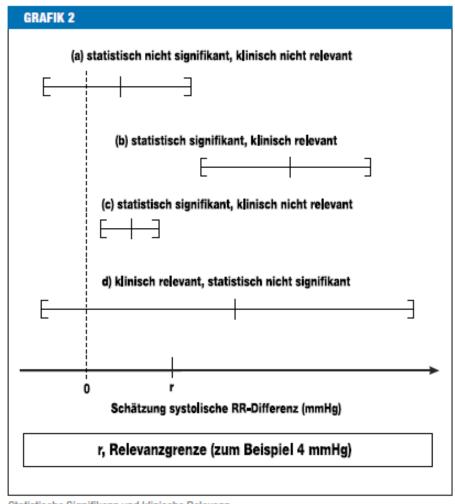



Abbildung 4.4: Illustration des Konfidenzniveaus. Von 20 95 %-Konfidenzintervallen überdeckt eines (das dunkelblaue) den wahren Wert nicht.

Klinische Relevanz versus statistische Signifikanz

Beispiel: Schätzen von Parametern (Konfidenzintervalle)

Table 2. Effect of Cytisine on Smoking Cessation.*				
Outcome	Cytisine (N=370)	Placebo (N = 370)	Percentage-Point Difference (95% CI)	Relative Rate (95% CI)†
	percent (number)		
Primary outcome: abstinence for 12 mo	8.4 (31)	2.4 (9)	6.0 (2.7–9.2)‡	3.4 (1.7-7.1)
Abstinence for 6 mo	10.0 (37)	3.5 (13)	6.5 (2.9-10.1);	2.9 (1.5-5.3)
Point prevalence at 12 mo	13.2 (49)	7.3 (27)	5.9 (1.6–10.3)§	1.8 (1.2–2.8)

Inferenzstatistik II: Signifikanztests

- Eine vorgegebene Annahme (Nullhypothese H0) wird anhand von Daten überprüft. Wenn die Daten "stark" von dem abweichen, was man unter der Nullhypothese erwartet, lässt man die Nullhypothese fallen.
- Im statistischen Test wird dieses Vorgehen formalisiert.
- Nachdem die Nullhypothese H0 und die Alternativhypothese H1 so formuliert sind, dass sie sich gegenseitig ausschließen und keine dritte Möglichkeit zulassen, ergibt sich ein einfaches Entscheidungsschema mit 4 Möglichkeiten
- Der <u>Fehler 1. Art</u> ist der Fehler, die Nullhypothese zu verwerfen, obwohl sie richtig ist.
- Der <u>Fehler 2. Art</u> ist der Fehler, die Nullhypothese zu behalten, obwohl sie falsch ist.

Inferenzstatistik II: Signifikanztests

- Ergebnis eines Signifikanztests ist die Teststatistik.
- Der Wertebereich der Teststatistik wird in zwei Teilmengen zerlegt, den Verwerfungsbereich und den Annahmebereich. Wenn die Prüfgröße in den Verwerfungsbereich fällt, wird die Nullhypothese verworfen, ansonsten wird sie behalten.
- Man wählt den Verwerfungsbereich so, dass unter H0 seine Wahrscheinlichkeit unter einen vorgegebenen Wert α fällt. α , das sogenannte Signifikanzniveau des Tests, ist damit die Obergrenze für die Wahrscheinlichkeit, den Fehler 1. Art zu begehen. α wird vom Versuchsleiter vorgegeben. Übliche Werte für α sind 0.05, 0.01 und 0.001.
- Welches α man wählt, hängt von den Konsequenzen ab, die der Fehler 1. Art hat. Der naheliegende Wunsch, α = 0 zu wählen, scheitert daran, dass dann β , die Wahrscheinlichkeit für den **Fehler 2. Art**, groß wird.

Definitionen

DEFINITION 5.1

Nullhypothese

In der Nullhypothese H_0 formulieren wir das Gegenteil der wissenschaftlichen Hypothese und nehmen an, dass Unterschiede, die wir in einer Stichprobe beobachten, lediglich durch Stichprobenvariation zustandegekommen sind.

DEFINITION 5.2

p-Wert

Der p-Wert ist die Wahrscheinlichkeit, unter Annahme von H_0 ein Resultat so groß wie das beobachtete oder noch extremer zu erhalten. "Extremer" bedeutet dabei "weiter weg vom Nullwert".

DEFINITION 5.3

Statistische Power

Die Power eines Hypothesentests ist definiert als $1-\beta$, also die Wahrscheinlichkeit, tatsächlich auf die Alternativhypothese zu entscheiden, wenn diese gilt. Das deutsche Wort für Power ist Trennschärfe, welches aber selten verwendet wird. Eine hohe Power eines Hypothesentests entspricht folglich einer hohen Wahrscheinlichkeit, bei Vorliegen der Alternative auch tatsächlich auf diese zu entscheiden, das heißt einen tatsächlich vorhandenen Effekt auch zu entdecken.

Evidenz gegen Nullhypothese

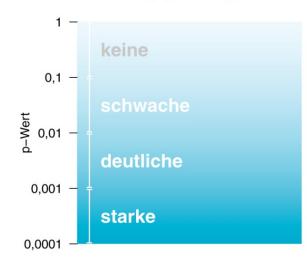


Abbildung 5.4: Interpretation von *p*-Werten.

In der Stichprobe	In der Population ist		
erhalten wir ein	<i>H</i> ₀ wahr	<i>H</i> ₁ wahr	
nicht signifikantes	korrekter Entscheid	falscher Entscheid	
Testresultat $(p > \alpha)$	$1-\alpha$	β	
signifikantes	falscher Entscheid	korrekter Entscheid	
Testresultat $(p \le \alpha)$	α	$1-\beta$	

Tabelle 5.2: Mögliche Entscheidungen in einem Hypothesentest. In der zweiten Zeile jedes Eintrags steht jeweils die auf die Tabellenspalten bedingte Wahrscheinlichkeit für die entsprechende Entscheidung.

Type I versus Type II Error

		Decide for		
		H _o	H ₁	
Reality	H ₀	Correct decision	Wrong decision: Type I error (α)	
	H ₁	Wrong decision: Type II error (β)	Correct decision: Power (1-β)	

Parallelgruppenstudie

- z.B. Untersuchung der Wirksamkeit eines neuen blutdrucksenkenden Medikaments im Vergleich zu einer Standardtherapie oder Placebo (=Kontrolle)
 - Nullhypothese H0: die beiden Therapien sind im Mittel gleich wirksam
 - z.B. die Änderung des systolischen Blutdrucks ist im Mittel in beiden Gruppen gleich
 - Die Ungültigkeit der Nullhypothese ist zu beweisen
- Alternativhypothese H1: die beiden Therapien sind im Mittel unterschiedlich stark wirksam
- <u>Voraussetzung</u>: Die beiden Gruppen stimmen in den wesentlichen Merkmalen überein – siehe Randomisierung
 - Nur die Therapien sind unterschiedlich
 - Strukturgleichheit der Gruppen

Die statistischen Hypothesen

Alternativhypothese H_A

Forschungshypothese

ungerichtet $H_1: \mu_A \neq \mu_B$

gerichtet $H_1: \mu_A > \mu_B$

Nullhypothese H₀

geht davon aus, dass das, was mit der Alternativhypothese behauptet wird, nicht zutrifft. $Ho: \mu_{\scriptscriptstyle A} = \mu_{\scriptscriptstyle B}$

Es gibt keinen Behandlungseffekt

Vorgehen bei der Hypothesenüberprüfung

- Formulierung der Hypothese, Auswahl des Tests
- Datenerhebung
- Analyse der Daten mit Methoden der beschreibenden Statistik (Häufigkeiten, Mittelwert,)
- Überprüfung der Daten auf Ihre Verteilung
 - Grafische Darstellung mittels Boxplot und Histogramm
 - Statistische Überprüfung mit dem Kolmogorov-Smirnov Test
- Adaptierung der Testauswahl
- Durchführung des Tests
- Interpretation des Ergebnisses

Steps in conducting a statistical test:

- Quantify the scientific problem from a clinical / biological perspective
- Formulate the model assumptions (distribution of the variable of interest)
- Formulate the problem as a statistical testing problem:
 Nullhypothesis versus alternative hypothesis
- Define the "error" you are willing to tolerate
- Calculate the appropriate test statistic
- Decide for the null hypothesis or against it

Formulating Hypothesis
&
Test statistics
&
p-values

Principles of statistical testing

Different approaches:

- Test for superiority, standard hypothesis testing
- Test for non-inferiority

the difference between the new treatment and the standard is less than the smallest clinically meaningful difference, define delta, use confidence intervals

Test for equivalence

To demonstrate the difference between the new treatment and standard treatment has no clinical importance, define delta

Three primary measures of interest:


a point estimate,

a confidence interval, and

a p-value

Example

2008: 100 Jahre Student's t-Test: William Sealy Gosset

VOLUME VI

MARCH, 1908

No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Introduction.

Any experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form a judgment as to the statistical constants of the population to which the experiments belong. In a great number of cases the question finally turns on the value of a mean, either directly, or as the mean difference between the two quantities.

If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty:—(1) owing to the "error of random sampling" the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals. It is usual, however, to assume a normal distribution, because, in a very large number of cases, this gives an approximation so close that a small sample will give no real information as to the manner in which the population deviates from normality: since some law of distribution must be assumed it is better to work with a curve whose area and ordinates are tabled, and whose properties are well known. This assumption is accordingly made in the present paper, so that its conclusions are not strictly applicable to populations known not be normally distributed; yet it appears probable that the deviation from normality must be very extreme to lead to serious error. We are concerned here solely with the first of these two sources of uncertainty.

The usual method of determining the probability that the mean of the population lies within a given distance of the mean of the sample, is to assume a normal distribution about the mean of the sample with a standard deviation equal to s/\sqrt{n} , where s is the standard deviation of the sample, and to use the tables of the probability integral.

Biometrika vi

http://www.guinness.com/

1936
The first GUINNESS®
brewery overseas is built
at Park Royal, London.
William Sealy Gossett,
the father of modern
statistics, is appointed
Head Brewer.

	Therapie	Syst. Blutdruck		
1	Therapie A	169		
2	Therapie A	139		
3 _	Therapie A	137		
4	Therapie A	152		
5	Therapie A	142		
6	Therapie A	163		
7	Therapie A	183		
8	Therapie A	143		
	$n_1 = 8$	$\overline{x}_1 = 153,5$		
1	Therapie B	155		
2	Therapie B	154		
3	Therapie B	176		
4	Therapie B	158		
5	Therapie B	156		
6	Therapie B	170		
7	Therapie B	168		
8	Therapie B	179		
9	Therapie B	167		
10	Therapie B	142		
11	Therapie B	163		
12	Therapie B	144		
	$n_2 = 12$	$\overline{x}_2 = _{161}$		

t-Test quantitatives Merkmal

H₀: Es besteht kein Therapieunterschied bzgl. mittleren Blutdrucks ($\mu_A = \mu_B$)

H₁: Es besteht ein Unterschied ($\mu_A \neq \mu_B$)

$$\hat{t} = 1,193$$

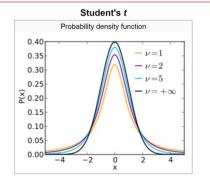
Syst. Blutdruck bei Therapie A größer bzw. kleiner als bei Therapie B => 2-seitiger t-Test

Testentscheidung:
$$\hat{t} = 1,193 < 2,101 = t_{18;0,975}$$

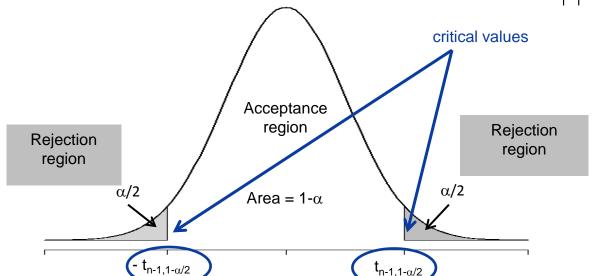
$$p = 0.248$$

 $t_{n;1-\alpha}$ mit n= Anzahl der Freiheitsgrade; $\alpha=$ Signifikanzniveau

=> Nullhypothese kann nicht abgelehnt werden


Student's t-Test für unabhängige Stichproben (1)

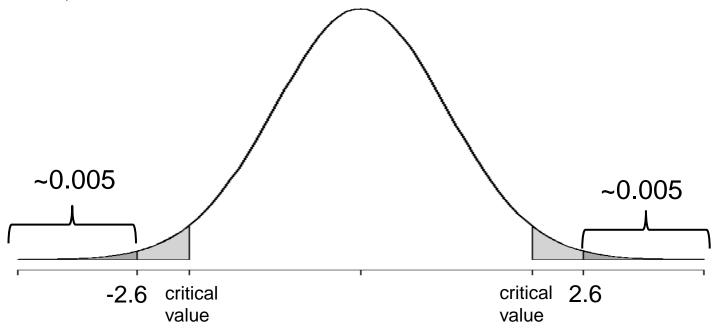
Parametrischer Test zum Vergleich von Mittelwerten


$$H_0: \mu_A = \mu_B \qquad \qquad H_1: \mu_A \neq \mu_B$$

• Teststatistik: $\hat{t} = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_y)}{\sqrt{\left(\frac{1}{N_x} + \frac{1}{N_y}\right) \frac{(N_x - 1)s_x^2 + (N_y - 1)s_y^2}{N_x + N_y - 2}}}$

- Falls die Nullhypothese gilt, ist die Teststatistik t(N_x+N_y-2)-verteilt
- Entscheidung:

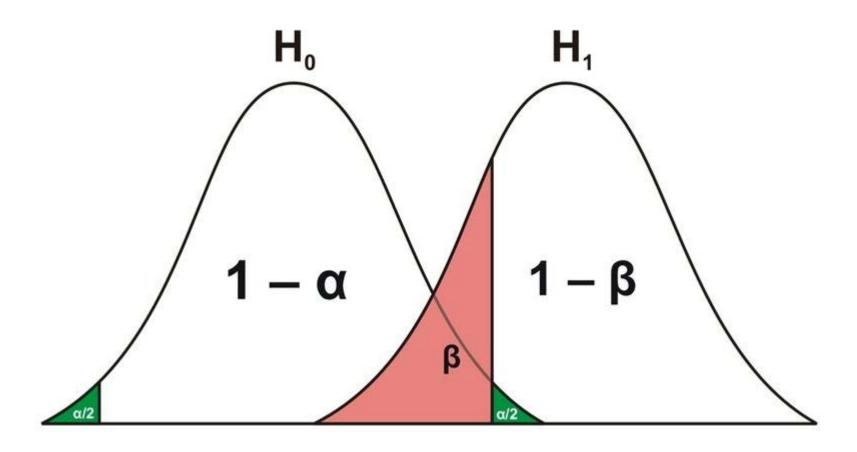
- H0 wird mit Irrtumswahrscheinlichkeit α verworfen, wenn: $\left|\hat{t}\right| > t_{(N_x+N_y-2),1-lpha/2}$



Rejection region: "H₀ wird abgelehnt, da Daten zu stark von dem abweichen, was man sich unter H0 erwarten würde"

Student's t-Test für unabhängige Stichproben (2)

- Wie gelangt man von der Teststatistik \hat{t} zum genauen p-Wert?
- Z.B. $\hat{t} = 2.6$



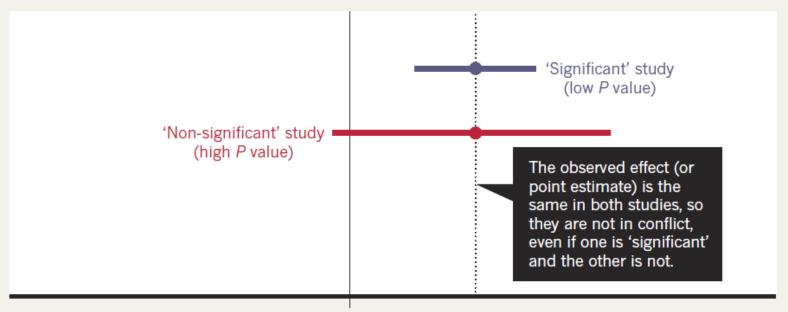
P-value (two-sided) = 0.005 + 0.005 = 0.01 (= Area under the curve)

12.04.2019 Seite 179

Fehler 1. und 2. Art - Zusammenhang

12.04.2019 Seite 180

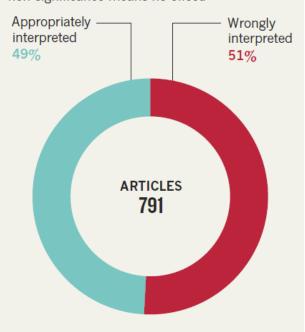
Was ist der p-Wert


- Wahrscheinlichkeit, daher 0<p-Wert<=1
- Er deutet an, wie wahrscheinlich es ist, ein Stichprobenergebnis wie beobachtet oder extremer zu erhalten, wenn die <u>Nullhypothese</u> wahr ist.
- Mit dem p-Wert wird also angedeutet, wie extrem das Ergebnis ist: je kleiner der p-Wert, desto mehr spricht das Ergebnis gegen die Nullhypothese
- p-Wert = P(Daten so extrem wie beobachtet | H₀)
- Häufige Fehlinterpretation: p-Wert gibt an, wie wahrscheinlich die Nullhypothese bei Erhalt eines Stichprobenergebnisses wie beobachtet ist, d.h. P(H₀|Daten so extrem wie beobachtet | H₀)
- Die Nullhypothese wird verworfen, wenn der p-Wert kleiner als das vom Anwender festgelegte Signifikanzniveau α ist (oft 0.01, 0.001, oder 0.05)
- Wenn die Nullhypothese zugunsten der Alternativhypothese verworfen wird, wird das Resultat als statistisch signifikant bezeichnet.
- Die Größe des p-Werts gibt keine Aussage über die Größe des wahren Effekts

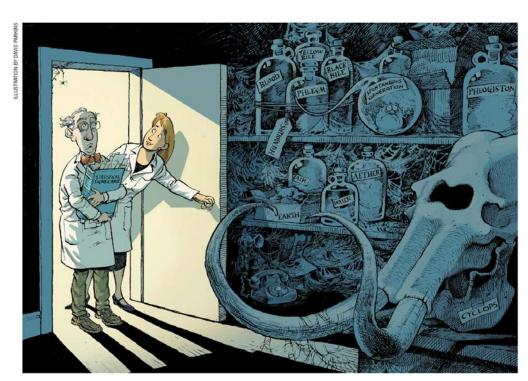
Falsche Schlußfolgerungen

BEWARE FALSE CONCLUSIONS

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.



Falsche Schlußfolgerungen



WRONG INTERPRETATIONS

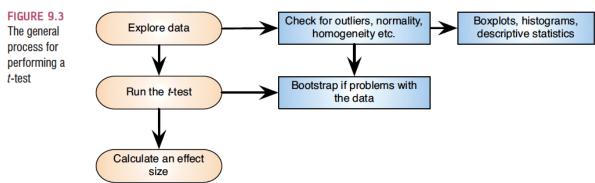
An analysis of 791 articles across 5 journals* found that around half mistakenly assume non-significance means no effect.

*Data taken from: P. Schatz et al. Arch. Clin. Neuropsychol. 20, 1053–1059 (2005); F. Fidler et al. Conserv. Biol. 20, 1539–1544 (2006); R. Hoekstra et al. Psychon. Bull. Rev. 13, 1033–1037 (2006); F. Bernardi et al. Eur. Sociol. Rev. 33, 1–15 (2017).

Retire statistical significance

Valentin Amrhein, Sander Greenland, Blake McShane and more than 800 signatories call for an end to hyped claims and the dismissal of possibly crucial effects.

Student's t-Test für unabhängige Stichproben (3)


- Ein zwei-Stichproben t-Test zum Vergleich der Mittelwerte in zwei Gruppen liefert einen Wert der Teststatistik von 2,6, was einen p-Wert von 0.01 liefert.
- Richtige Interpretation:
 - Falls das Experiment 100 Mal wiederholt wird, d.h. 100 Mal zufällig eine Stichprobe gezogen wird, dann Teststatistik berechnet wird etc., und falls es in Wirklichkeit keinen Unterschied zwischen den beiden Gruppen gibt (Mittelwerte sind gleich), dann kann man erwarten, dass nur eine dieser 100 Teststatistiken einen Wert ≥ |2.6| aufweist
- Falsche Interpretation:
 - Die Nullhypothese ist zu 99% falsch

https://www.graphpad.com/quickcalcs/ttest1.cfm

Student's t-Test für unabhängige Stichproben (4)

- Damit die Teststatistik unter H₀ auch tatsächlich t-verteilt ist und der Test valide ist, müssen folgende Voraussetzungen erfüllt sein:
 - Jede der beiden Grundgesamtheiten sollten normalverteilt sein,
 Abweichungen bei größeren Stichprobenumfängen (N>=30) zulässig (zentraler Grenzwertsatz)
 - -> Graphische Überprüfung mittels Histogramm
 - -> Kolmogoroff-Smirnov-Test
 H₀: Daten sind normalverteilt vs. H₁: Daten sind nicht normalverteilt
 - Gleiche Varianzen in den beiden Gruppen
 - -> Levene-Test

Gepaarter Zwei-Stichproben t-Test

- Vorher-Nachher-Messungen
- Gruppe 1 (vorher) nicht unabhängig von Gruppe 2 (nachher)
- Modifikation der t-Tests notwendig
- ->Abhängiger/Gepaarter t-Test
- Berechnung der Differenz D für jedes Paar

$$H_0: \mu_D = 0$$
 $H_1: \mu_D \neq 0$
$$t = \frac{\overline{D} - \mu_D}{s_D / \sqrt{N}} \sim t_{n-1}$$

Verbundene versus unverbundene Stichproben

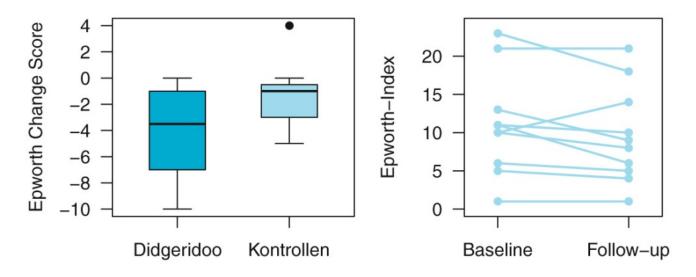


Abbildung 4.5: Illustration von unverbundenen (links) und verbundenen (rechts, nur Kontrollgruppe) Stichproben in der Didgeridoo-Studie.

Beispiel

• Um eine neue Therapie zur Senkung des Cholesterinspiegels zu testen, werden bei zehn Probanden vor und nach der Behandlung die Cholesterinwerte bestimmt. Es ergeben sich die folgenden Messergebnisse:

Vor der Behandlung:	223	259	248	220	287	191	229	270	245	201
Nach der Behandlung:	220	244	243	211	299	170	210	276	252	189
Differenz:	3	15	5	9	-12	21	19	-6	-7	12

$$ar{d} = 5.9 \qquad s_d = 11,3866$$

https://www.graphpad.com/quickcalcs/ttest1.cfm

$$t = \sqrt{10} \frac{5,9}{11,3866} = 1,6385.$$

Teststatistik

$$t(0,975; 9) = 2,2622$$

Kritischer Wert

$$|t| \le t(0.975; 9)$$

Die Nullhypothese, dass die Erwartungswerte der Cholesterinwerte vor und nach der Behandlung gleich sind, kann nicht abgelehnt werden. Wenn die Behandlung überhaupt einen Effekt hat, so ist dieser nicht groß genug, um ihn mit einem so kleinen Stichprobenumfang zu entdecken.

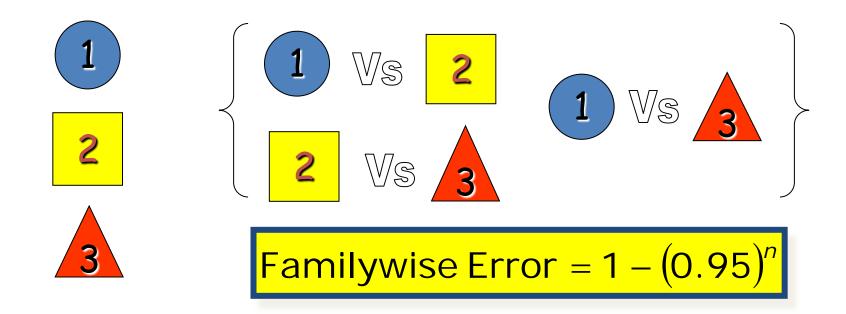
ANOVA

- Analysis of Variance Streuungszerlegung
- Parametrischer Test zum Vergleich von Mittelwerten
- T-test = Zweigruppenvergleich, ANOVA mehrere Gruppen möglich
- Mittelwertsvergleich erfolgt durch die Zerlegung der Varianz in:
 - Streuung zwischen den Gruppen
 - Streuung innerhalb der Gruppen
- Voraussetzungen
 - Normalverteilung
 - Varianzhomogenität

ANOVA

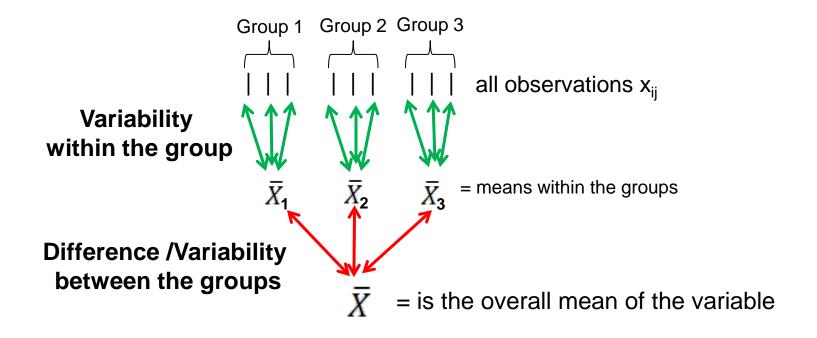
- Einfache ANOVA,
 ein Faktor mit >= 2 Stufen
- Mehrweg-ANOVA,
 mehrere Faktoren mit >= 2 Stufen
- Kovarianzanalyse, auch stetige Einflussfaktoren
- Multivariate ANOVA, mehrere abhängige Variablen
- ANOVA für Messwiederholungen, aufeinanderfolgende Beobachtungen sind abhängig

ANOVA, post hoc Vergleiche


- Bonferroni
- Bonferroni-Holm
- Holm-Sidak
- Tukey
- Scheffe
- LSD
- Dunnett

Why Not Use Lots of *t*-Tests?

If we want to compare several means why don't we compare pairs of means with *t*-tests?


- Can't look at several independent variables.
- Inflates the Type I error rate.

Analysis of Variance (ANOVA)

- Situation: Compare the means of k samples (k>2)
- Assumption: normal distribution of the population, $\sigma = \sigma_1 = \sigma_2 = ... = \sigma_k$
- Hypothesis: H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ versus H_1 : $\mu_i \neq \mu_j$ ($i \neq j$): At least two of the means differ
- Nowadays, linear mixed effects models are preferred instead of ANOVA

Pearson`s Chi-Quadrat Test

1900

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Fisher's Exakter Test INNSBRUCK

Varianzanalyse

Korrelation und Regression

Karl Pearson (1857-1936)

Sir Ronald Aylmer Fisher (1890-1962)

Chi-Quadrat-Test qualitatives Merkmal

Blutdruck	Therapie A	Therapie B	Gesamt
Hypertonie	n _{1.1} =300	n _{1.2} =150	n _{1.} =450
Normotonie	n _{2.1} =300	n _{2.2} =250	n _{2.} =550
Gesamt	n _{.1} =600	n _{.2} =400	n=1000

H0: Es besteht kein Zusammenhang zwischen Therapie und Blutdruck ($p_A = p_B$)

H1: Es besteht ein Zusammenhang ($p_A \neq p_B$)

Teststatistik:
$$\hat{\chi}^2 = n \cdot \frac{(n_{22} \cdot n_{11} - n_{21} \cdot n_{12})^2}{(n_{21} \cdot n_{11} \cdot n_{22} \cdot n_{11})} = 1000 \cdot \frac{(300 \cdot 250 - 300 \cdot 150)^2}{450 \cdot 550 \cdot 600 \cdot 400} = 15,15$$

Testentscheidung: $\hat{\chi}^2 = 15,15 > 3,841 = \chi^2_{1;0,95}$ => Ablehnen der Nullhypothese

 $\chi_{n;1-\alpha}^2$ mit n = Anzahl der Freiheitsgrade; $\alpha = \text{Signifikanzniveau}$ hanno.ulmer@i-med.ac.at

Beispiel

Smoking status	Current Smoker	Ex- Smoker	Never Smoker	Row Total
Gender				
Men	144	310	268	722
Women	117	143	475	735
Column Total	261	453	743	1457

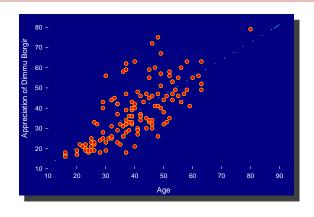
Teststatistik: $121.9218 \sim \chi^2((2-1)^*(3-1)) = \chi^2(2)$

Kritischer Wert von χ^2 (2) = 5.99

→ Nullhypothese (Rauchverhalten unterscheidet sich nicht zwischen Männern und Frauen) kann abgelehnt werden(p = 3.3e-27)

Übung: Führen Sie einen Chi-Quadrat Test durch

Table 2. Effect of Cytisine on Smoking Cessation.*				
Outcome	Cytisine (N=370)	Placebo (N = 370)	Percentage-Point Difference (95% CI)	Relative Rate (95% CI)†
	percent (number)		
Primary outcome: abstinence for 12 mo	8.4 (31)	2.4 (9)	6.0 (2.7–9.2)‡	3.4 (1.7-7.1)
Abstinence for 6 mo	10.0 (37)	3.5 (13)	6.5 (2.9-10.1);	2.9 (1.5-5.3)
Point prevalence at 12 mo	13.2 (49)	7.3 (27)	5.9 (1.6–10.3)§	1.8 (1.2–2.8)


Regression – significance testing (1)

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + \varepsilon_i$$

$$SS_{tot} = SS_{reg} + SS_{res}$$

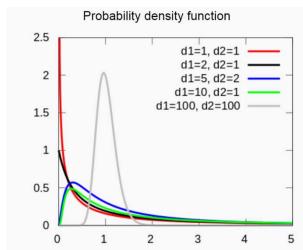
$$R^2 = \frac{SS_{reg}}{SS_{tot}}$$
 ... Coefficient of determination

Using the regression model, can we significantly better predict values of the outcome than using the mean?

H0: $R^2=0$ (alternativ: $\beta_1=\beta_2=...=\beta_n=0$)

H1: R²≠0

Test statistic:



F-distribution:

MS ... Mean Squares (averages of total values)

 $F \sim F(n,N-(n+1))$ -distributed

ANOVA test – **AN**alysis **O**f **VA**riance

Regression – significance testing (2)

Critical values for the F-distribution:

http://www.socr.ucla.edu/applets.dir/f table.html

Critical value for F(1,198) for α =0.05: ~3.9

Regression – significance testing (3)

To test the significance of individual regression coefficients

$$H_0: \beta_j = 0$$

$$H_1: \beta_j \neq 0$$

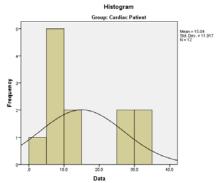
— Test statistic:
$$T_0 = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$$
 ~ t(N-2)-distributed

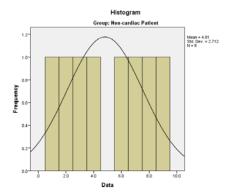
Coof	ficient	·a
Coei	retein	.3

		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confide	nce Interval for B
Model		В	Std. Error	Beta	t	Sig.	ower Bound	Upper Bound
1	(Constant)	134.140	7.537		17.799	.000	119.278	149.002
	Advertsing Budget (Thousands of Pounds)	.096	.010	.578	9.979	.000	.077	.115
2	(Constant)	-26.613	17.350		-1.534	.127	-60.830	7.604
	Advertsing Budget (Thousands of Pounds)	.085	.007	.511	12.261	.000	.071	.099
	No. of plays on Radio	3.367	.278	.512	12.123	.000	2.820	3.915
	Attractiveness of Band	11.086	2.438	.192	4.548	.000	6.279	15.894

a. Dependent Variable: Album Sales (Thousands)

Regression – significance testing (4)

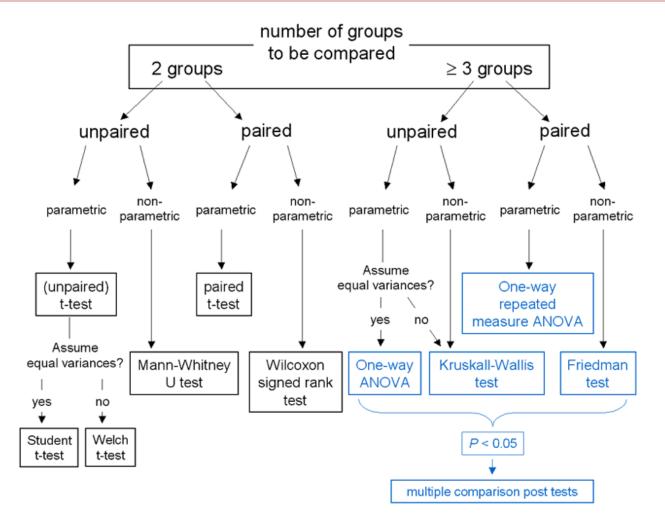

- Prerequisites that F-test (ANOVA) and t-test for regression are valid
 - Homoscedasticity:
 - For each value of the predictors the variance of the error term should be constant.
 - Independent Errors:
 - For any pair of observations, the error terms should be uncorrelated
 - Normally-distributed Errors
 - Normal probability plot


Nicht-parametrische Tests Mann-Whitney U Test (1)

- 20 Patienten einer Klinik werden untersucht. 12 davon sind in kardiologischer Behandlung, während 8 dies nicht sind. Sie alle beantworten einen Fragebogen zum allgemeinen Wohlbefinden (Werte von 0 bis 35, 0 steht für ein sehr hohes, 35 für ein sehr geringes Wohlbefinden). Es soll geprüft werden, ob es Unterschiede hinsichtlich der zentralen Tendenz des Wohlbefindens zwischen den Herzpatienten und den übrigen Patienten gibt.
- Mann-Whitney.sav
- T-Test: Nur zulässig, falls Daten normalverteilt
- Falls Voraussetzungen für T-Test nicht erfüllt, dann:
- Mann-Whitney U Test: zulässig für alle Verteilungen, solange $F_Y(x) = F_X(x-a)$ gilt (Verteilung in den beiden Gruppen bis aut verscniebung gleich)

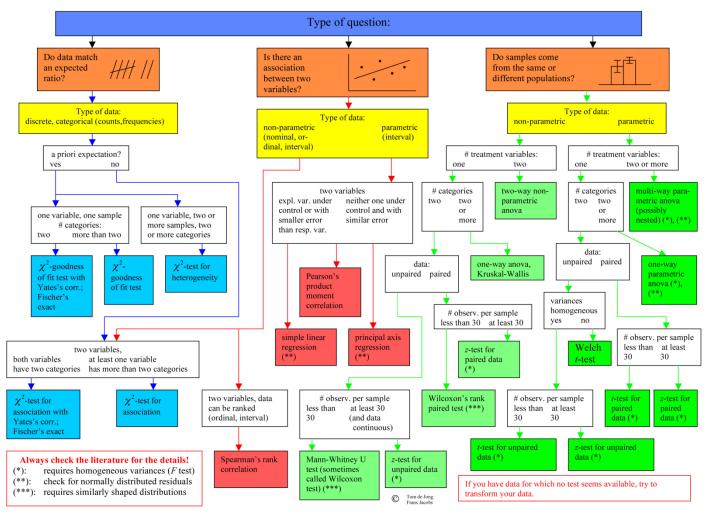
$$H_0: a = 0 \text{ vs. } H_1: a \neq 0$$

Nicht-parametrische Tests Mann-Whitney U Test (2)


• MWU-Test rechnet mit den Rängen, nicht mit den Messwerten selbst

ID	Gruppe	Wohlbefinden	Ränge Gruppe 1	Ränge Gruppe 2
5	1	0	1	
6	2	1		2
14	2	2		3
9	2	3		4
18	2	4		5
10	1	5	6	
19	1	5.5	7	
1	2	6		8
8	2	6.5		9
17	1	7	10	
15	2	7.5		11
11	1	8	12	
3	2	8.5		13
2	1	9	14	
20	1	11	15	
12	1	13	16	
16	1	28	17	
4	1	29	18	
7	1	32	19	
13	1	33	20	
Rangsu	mme		155	55

- Berechnung der Rangsummen in beiden Gruppen
- Teststatistik U: $U = n_1 n_2 + \frac{n_1(n_1+1)}{2} R_1$ n1=Stichprobengrösse der Gruppe mit der größeren Rangsumme n2=Stichprobengrösse der Gruppe mit der kleineren Rangsumme R1=größere der beiden Rangsummen
- Im Bsp.: $U = 12 \cdot 8 + \frac{12(12+1)}{2} 155 = 19$
- Stichprobe hinreichend groß (n₁+n₂>30): U annähernd normalverteilt
- Im Bsp.: $z = \frac{U \mu_U}{\sigma_U} = \frac{19 \frac{12 \cdot 8}{2}}{\sqrt{\frac{12 \cdot 8(12 + 8 + 1)}{12}}} = -2.34$
- p < 0.05, da -2.34 < -1.96


Overview of statistical tests (2)

Overview of statistical tests (3)

Common statistical tests

	Quantitative o	utcome variable	Qualitative outcome variable		
	Normal distribution	Any other distribution	Expected frequency in each cell of the crosstable "high"	Expected frequency in each cell of the crosstable "low"	
Compare 2 groups	t-test	Wilcoxon-test / Mann-Whitney U- Test	Chi-Square	Fishers exact test	
Compare >2 groups	Analysis of Variance (ANOVA)	Kruskal-Wallis-Test	Chi-Square		

Testing measures of location:

Does the mean/median differ between groups

Testing frequencies in a crosstable:

Are the rows and columns independent from each other?

Wichtige Signifikanztests

		Zielvariable(Outcome)		
		Ouglitativ	Quantitativ	
		Qualitativ	Normalverteilung	Beliebige Verteilung
Vergleich zweier	Unverbunden	<u>Chi-Quadrat Test,</u> Fisher Test	t <u>-Test</u> für unverbundene Stichproben	Mann-Whitney U Test
Gruppen	Verbunden	McNemar Test	t-Test für verbundene Stichproben	Wilcoxon Test
Vergleich von	Unverbunden	Chi-Quadrat Test	Einfache Varianzanalyse	Kruskal-Wallis Test
mehr als zwei Gruppen	Verbunden	Q-Test von Cochran	Varianzanalyse für Meßwiederholungen	Friedman Test

Multiples Testen

- "The multiple comparison problem involves the repeated testing of a series of hypotheses and the resultant increasing probability of a type I error." Van Belle (2002), p. 149.
- P (Fehler 1. Art)

$$\alpha = 1 - (1 - 0.05)^n$$

• z.B. Bonferroni-Korrektur

$$\alpha_i = \frac{0.05}{n}$$

Sample size estimation

Question: How many individuals do you have to include in your study to get a reliable result?

- \rightarrow We want to maximize the probability for rejecting H_0 , if H_1 is true
- \rightarrow while keeping the Type I error α fixed

What do you have to know to calculate the sample size needed?

- 1. Power (typically set to 80% or 90%)
- 2. Type I error α (typically set to $\alpha = 0.05$)
- 3. The difference you want to find (for t-tests: the mean difference between groups)
- 4. standard deviation / measure of variance

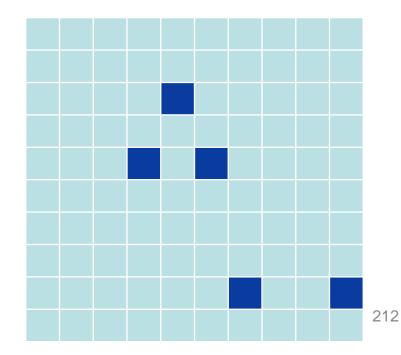
Example

- Hypothesis: H_0 : $\mu_A = \mu_B$ versus H_1 : $\mu_A \neq \mu_B \rightarrow$ two-sided t-test
- You consider a difference of 10 as relevant
- From former studies, you know, that the standard deviation is ~ 15 mmHG
- So far, you have recruited 20 patients (10 in each treatment arm)
- → What is your power?

Sample size estimation

Fallzahlschätzung für unverbundene Stichproben und stetige Zielgrößen

Ende Neustart Hilfe!						
 Fallzahlberechnung für vorgegebene Power Powerberechnung für vorgegebene Fallzahl Entdeckbare Differenz für vorgegebene Fallzahl und Power 						
Eingabe von μ ₁ :		Eingabe von	ա ₂ ։			
Eingabe von σ:	15	Differenz De	lta:	10		
 Einseitige Zweiseitige						
Eingabe von	x (Standard is	st 0.05):	.05			
Eingaber der	Eingaber der Power (Standard ist 0.80): 0.294					
Die Fallzahl für jede Gruppe ist: 10						
Berechne						



The situation:

- Consider a dataset with 100 independent parameters, which do not play a role in the etiology of the disease of interest (what you don't know, of course)
- \rightarrow 100 statistical tests are performed with a significance level of α =0.05
- → The tests are constructed in that way, that maximum 5 of 100 tests reject the Nullhypothesis, although it is true (which is the case in this example)

→ You expect 5 tests to be significant just by chance

- The probability to get at least one Type I error increases with increasing number of tests.
- Family-wise error rate (the error rate for the complete family of tests performed): $\alpha^*=1-(1-\alpha)^k$, with α being the comparison-wise error rate

The probability to get one or more false discoveries (Type I error)

k	α * (α =0.05)
1	0.05
5	0.226
10	0.401
100	0.994

→ The significance level has to be modified for multiple testing situations

The Bonferroni correction method:

- Control the comparison-wise error rate: Reject H_0 , if $p < \alpha$
- Control the family-wise error rate (including k tests): Reject H_0 , if $p < \alpha/k$
 - → Advantage: simple
- Problem: Bonferroni-correction increases the probability of a type II error
 - \rightarrow the power of detecting a true association is reduced \rightarrow **Disadvantage:**

too conservative

k	α /k (α =0.05)		
1	0.05		
5	0.01 —		0.05/5=0.01
10	0.005		
100	0.0005		

Problem of Multiplicity

Number of tests	α level (in each test)	Global α level (risk of making at least one type 1 errror)
1	0.05	0.05
2	0.05	0.10
3	0.05	0.14
5	0.05	0.23
14	0.05	0.51
100	0.05	0.994

Already by 14 tests we have over 50% chance of falsely rejecting H_0 in at least one of the tests.

Das Problem der Multiplizität

ICH E9:

"Multiplicity may arise, for example, from multiple primary variables, ... multiple comparisons of treatments, repeated evaluations over time and/or interim analyses."

- Mehrere Zielkriterien
- Mehr als 2 Behandlungsgruppen
- Zielkriterium an mehreren Zeitpunkten gemessen
- Zwischenauswertungen

How to correct for multiplicity?

Bonferroni correction:

Create a corrected significance level α/N and test each of the analyses on this new level.

Example: We have 5 tests (N=5) and we wish to have an overall α =0.05. Conduct each test on the corrected significance level α =0.05/5=0.01.

Advantages:

- Easy to implement.
- No order of objectives

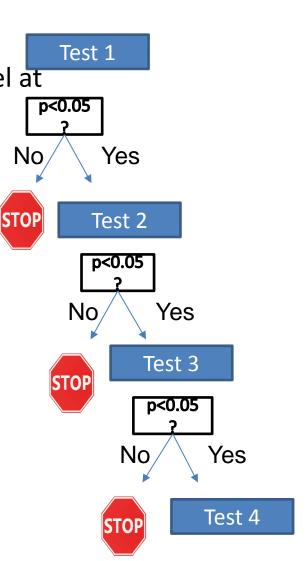
Disadvantages:

Very conservative

How to correct for multiplicity?

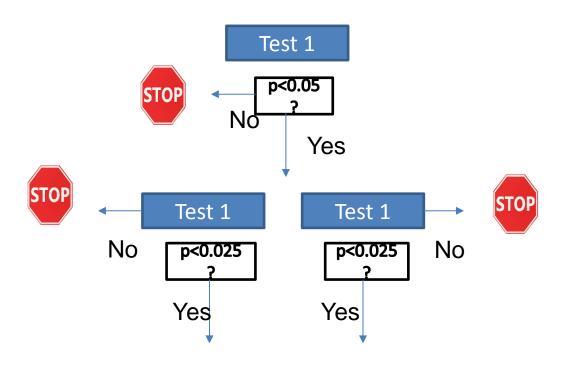
Gate keeping procedures:

Order objectives/analyses. Test each level at If significant => move to next level.


If non significant => STOP!

Advantages:

- Easy to implement.
- All tests on the same αl evel


Disadvantages:

- Must be pre-planed.
- Requires order of analyses.
- Some analyses may not be conducted.

Combined Bonferroni and Gate keeping

How to correct for multiplicity?

Bonferroni-Holm

Conduct all tests (N tests). Order all the p-values from smallest to biggest: $P_{(1)}$, $P_{(2)}$,... $P_{(N)}$

Test the smallest p-value $(P_{(1)})$ on $P_{(1)} < \alpha/(N+1)$ and the m^{th} p-value on $P_{(m)} < \alpha/(N+1-m)$. STOP at first non significant p-value (this p-value and all bigger p-values will be considered non-significant).

Advantages:


- No order of objectives.
- Not as conservative as Bonferroni.

Disadvantages:

Hard to implement/explain.

Beispiel für Adjustierung des Fehlers 1. Art in Zwischenauswertungen

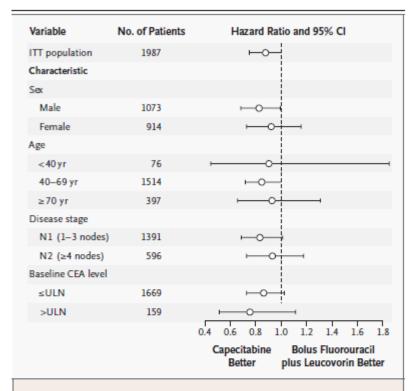


Figure 2. Subgroup Analysis of Disease-free Survival in the Capecitabine Group as Compared with the Fluorouracil-plus-Leucovorin Group (Intention-to-Treat Population).

Data on carcinoembryonic antigen (CEA) levels were missing for 159 patients who were therefore not included in the analysis for this variable. ITT denotes intention to treat, N nodal status, and ULN upper limit of normal.

Lösungen für das Multiplizitätsproblem

- die Studie als explorativ zu definieren data mining, fishing for significance erlaubt
- 1 primärer Zielparameter wird konfirmatorisch ausgewertet, alle übrigen explorativ
- Alfa-Adjustierung: Aufteilung des Signifikanzniveaus (erhöht Fallzahl)
 - Extrembeispiel: Biomarkersuche in Proteomics und Genomics
- A priori Ordnung der Hypothesen (bis zur ersten Nichtsignifikanz mit alfa=0,05 testen)

ANOVA

- Null Hyothesis:
 - Like a t-test, ANOVA tests the null hypothesis that the means are the same.
- Experimental Hypothesis:
 - The means differ.
- ANOVA is an Omnibus test
 - It test for an overall difference between groups.
 - It tells us that the group means are different.
 - It doesn't tell us exactly which means differ.
- H0: $\mu_1 = \mu_2 = ... = \mu_k$
- H1: es gibt i und j mit μ_i ≠ μ_i

Theory of ANOVA (1)

- Same concept as shown for the F-test for regression
- Decomposition of the total variability (SS_T) into (i) variability between groups (SS_M) and (ii) variability within groups (SS_R)

$$SS_T = \sum (x_i - \overline{x}_{grand})^2$$

$$df_T = (N-1)$$

$$SS_T = SS_M + SS_R$$

$$SS_M = \sum n_i (\overline{x}_i - \overline{x}_{grand})^2$$

$$df_M = (k-1)$$

$$MS_{M} = \frac{SS_{M}}{df_{M}}$$

$$SS_R = \sum (x_i - \overline{x}_i)^2$$

$$df_R = (n_1 - 1) + \dots + (n_k - 1)$$

$$MS_R = \frac{SS_R}{df_R}$$

- k ... number of groups, ni ... size of group i, N ... n1+ ... + nk
- SS ... Sum of squares
- MS ... Mean squares

12.04.2019

Theory of ANOVA (2)

$$F = \frac{MS_M}{MS_R}$$

follows a F(k-1,N-k) distribution

Decision about H0 ($\mu_1 = \mu_2 = ... = \mu_k$) by comparing F with the critical value of the F(k-1,N-k) distribution

Assumptions which have to be fulfilled for the ANOVA (the same as for the t-test)

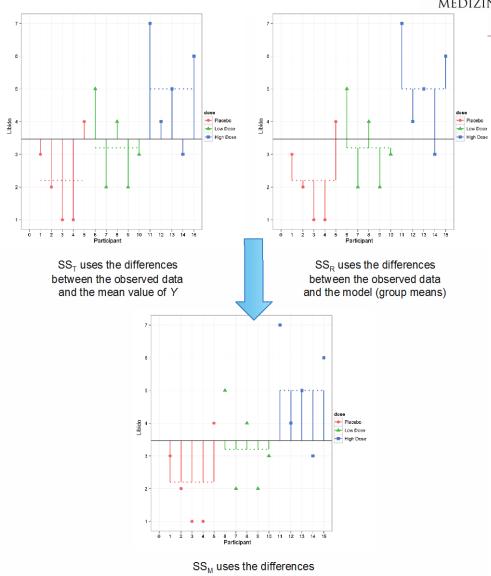
- data normally distributed
- homogeneity of variances

ANOVA by hand (1)

- Testing the effects of viagra on libido using three groups:
 - Placebo (Sugar Pill)
 - Low Dose Viagra
 - High Dose Viagra
- The outcome/dependent variable (DV) was an objective measure of libido.

TABLE 11.1 Data in Viagra.sav

	Placebo	Low Dose	High Dose
	3	5	7
	2	2	4
	1	4	5
	1	2	3
	4	3	6
\overline{X}	2.20	3.20	5.00
S	1.30	1.30	1.58
S^2	1.70	1.70	2.50
		= 3.467 Grand <i>SD</i> = 1.76 d variance = 3.124	7


ANOVA by hand (2)

CHE UNITED TO THE STATE OF THE

MEDIZINISCHE UNIVERSITÄT

FIGURE 11.3

Graphical representation of the different sums of squares in ANOVA designs

 $\begin{array}{c} \text{SS}_{\text{M}} \text{ uses the differences} \\ \text{between the mean value of Y} \\ \text{and the model (group means)} \end{array}$

ANOVA by hand (3)

Step 1:

TABLE 11.1 Data in Viagra.sav

	Placebo	Low Dose	High Dose
	3	5	7
	2	2	4
	1	4	5
	1	2	3
	4	3	6
X	2.20	3.20	5.00
S	1.30	1.30	1.58
S^2	1.70	1.70	2.50
		= 3.467 Grand <i>SD</i> = 1.76 d variance = 3.124	5 7

Step 2:

$$SS_M = \sum n_i (\overline{x}_i - \overline{x}_{grand})^2$$

$$SS_{M} = 5(2.2 - 3.467)^{2} + 5(3.2 - 3.467)^{2} + 5(5.0 - 3.467)^{2}$$

$$= 5(-1.267)^{2} + 5(-0.267)^{2} + 5(1.533)^{2}$$

$$= 8.025 + 0.355 + 11.755$$

$$= 20.135$$

<u>Step 3:</u>

$$SS_R = s_{group1}^2(n_1 - 1) + s_{group2}^2(n_2 - 1) + s_{group3}^2(n_3 - 1)$$

$$= (1.70)(5 - 1) + (1.70)(5 - 1) + (2.50)(5 - 1)$$

$$= (1.70 \times 4) + (1.70 \times 4) + (2.50 \times 4)$$

$$= 6.8 + 6.8 + 10$$

$$= 23.60$$

Step 4: Double check

$$SS_T = 3.124(15-1)$$

= 43.74

$$SS_T = SS_M + SS_R$$

 $43.74 = 20.14 + 23.60$
 $43.74 = 43.74$

ANOVA by hand (4)

Step 5: Calculate mean squared errors

$$MS_M = \frac{SS_M}{df_M} = \frac{20.135}{2} = 10.067$$

$$MS_R = \frac{SS_R}{df_R} = \frac{23.60}{12} = 1.967$$

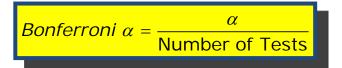
$$F = \frac{MS_M}{MS_R} = \frac{10.067}{1.967} = 5.12$$

Step 7: Critical value of F(2,12): 3.89

5.12 > 3.89 – therefore H₀ can be rejected

Summary table:

Source	SS	df	MS	F
Model	20.14	2	10.067	5.12*
Residual	23.60	12	1.967	
Total	43.74	14		


Follow-up tests

- The F-ratio does not tell us specifically which group means differ from which
- We need additional tests to find out where the group differences lie

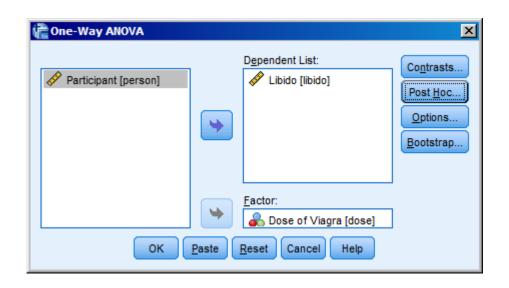
-> Post Hoc tests

- Compare each mean against all others.
- Multiple tests
- To control the family-wise error rate, stricter criteria to accept an effect as significant must be used
- Simplest example is the Bonferroni method

Post-hoc tests

- SPSS has 18 types of Post Hoc tests!
 - Bonferroni (conservative option)
 - Bonferroni-Holm
 - Holm-Sidak
 - Tukey HSD
 - Scheffe
 - LSD
 - Dunnett

Multiple Comparisons


Dependent Variable: Libido							
						95% Confide	ence Interval
	() Dose of Viagra	(J) Dose of Viagra	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Placebo	Low Dose	-1.000	.887	.516	-3.37	1.37
		High Dose	-2.800"	.887	.021	-5.17	43
	Low Dose	Placebo	1.000	.887	.516	-1.37	3.37
		High Dose	-1.800	.887	.147	-4.17	.57
	High Dose	Placebo	2.800"	.887	.021	.43	5.17
		Low Dose	1.800	.887	.147	57	4.17
Games-Howell	Placebo	Low Dose	-1.000	.825	.479	-3.36	1.36
		High Dose	-2.800	.917	.039	-5.44	16
	Low Dose	Placebo	1.000	.825	.479	-1.36	3.36
		High Dose	-1.800	.917	.185	-4,44	.84
	High Dose	Placebo	2.800	.917	.039	.16	5.44
		Low Dose	1.800	.917	.185	84	4.44
Dunnett t (>control)	Low Dose	Placebo	1.000	.887	.227	87	
	High Dose	Placebo	2.800	.887	.008	.93	

^{*.} The mean difference is significant at the 0.05 level.

a. Dunnett t-tests treat one group as a control, and compare all other groups against it.

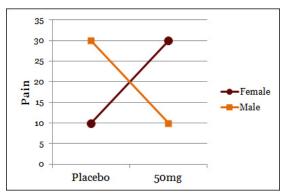
ANOVA in SPSS

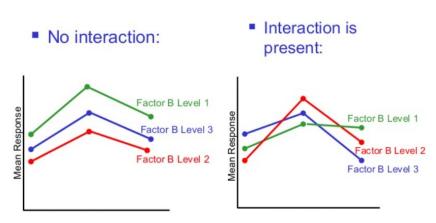
ANOVA

Libido

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	20.133	2	10.067	5.119	.025
Within Groups	23.600	12	1.967		
Total	43.733	14			

ANOVA - Variants


- Till now: only one factor (group variable)
 - Simple ANOVA / One-way ANOVA
- Extension: several factors each with >= 2 levels
 - Two-way/Three-way etc. ANOVA
 - Several Independent Variables is known as a factorial design
- **ANCOVA**: Analysis of Covariance, also continuous/metric independent variables are allowed
- Multivariate ANOVA: several dependent variable
- ANOVA for repeated measurements: subsequent observations are dependent


Two-way (independent) ANOVA

- Two Independent Variables
- Several independent variables is known as a factorial design
- Benefit of factorial designs
 - We can look at how variables interact
- Interactions
 - Show how the effects of one IV might depend on the effects of another
 - Are often more interesting than main effects.

Examples:

Variance decomposition

nd B

Two-way ANOVA – example (1)

- Field (2013): Testing the effects of Alcohol and Gender on 'the beer-goggles effect':
 - IV 1 (Alcohol): None, 2 pints, 4 pints
 - IV 2 (Gender): Male, Female
- Dependent Variable (DV) was an objective measure of the attractiveness of the partner selected at the end of the
 TABLE 13.1 Data for the beer-goggles effect

evening.

Alcohol	None		2 Pi	2 Pints		ts
Gender	Female	Male	Female	Male	Female	Male
	65	50	70	45	55	30
	70	55	65	60	65	30
	60	80	60	85	70	30
	60	65	70	65	55	55
	60	70	65	70	55	35
	55	75	60	70	60	20
	60	75	60	80	50	45
	55	65	50	60	50	40
Total	485	535	500	535	460	285
Mean	60.625	66.875	62.50	66.875	57.50	35.625
Variance	24.55	106.70	42.86	156.70	50.00	117.41

Grand mean: 58.33

Two-way ANOVA – example (2)

Step 1: Calculate SS_T

$$SS_T = s_{grand}^2 (N-1)$$

= 190.78 (48 - 1)
= 8966.66

Step 2: Calculate SS_M

$$SS_{M} = \sum n_{i} (\overline{x}_{i} - \overline{x}_{grand})^{2}$$

$$\begin{split} \text{SS}_{\text{M}} &= 8(60.625 - 58.33)^2 + 8(66.875 - 58.33)^2 + 8(62.5 - 58.33)^2 \\ &\quad + 8(66.875 - 58.33)^2 + 8(57.5 - 58.33)^2 + 8(35.625 - 58.33)^2 \\ &= 8(2.295)^2 + 8(8.545)^2 + 8(4.17)^2 + 8(8.545)^2 + 8(-0.83)^2 + 8(-22.705)^2 \\ &= 42.1362 + 584.1362 + 139.1112 + 584.1362 + 5.5112 + 4124.1362 \\ &= 5479.167 \end{split}$$

TABLE 13.1 Data for the beer-goggles effect

Alcohol	Noi	1e	2 Pi	nts	4 Pin	ts
Gender	Female	Male	Female	Male	Female	Male
	65	50	70	45	55	30
	70	55	65	60	65	30
	60	80	60	85	70	30
	60	65	70	65	55	55
	60	70	65	70	55	35
	55	75	60	70	60	20
	60	75	60	80	50	45
	55	65	50	60	50	40
Total	485	535	500	535	460	285
Mean	60.625	66.875	62.50	66.875	57.50	35.625
Variance	24.55	106.70	42.86	156.70	50.00	117.41

Grand mean: 58.33

Step 2a: Calculate SS_A

$$SS_{Gender} = 24(60.21 - 58.33)^2 + 24(56.46 - 58.33)^2$$

= 24(1.88)² + 24(-1.87)²
= 84.8256 + 83.9256
= 168.75

	A ₁ : Female	
65	70	55
70	65	65
60	60	70
60	70	55
60	65	55
55	60	60
60	60	50
55	50	50

	A ₂ : Male				
50	45	30			
55	60	30			
80	85	30			
65	65	55			
70	70	35			
75	70	20			
75	80	45			
65	60	40			

Mean Female = 60.21

Mean Male = 56.46

Two-way ANOVA – example (4)

Step 2b: Calculate SS_R

$$SS_{alcohol} = 16(63.75 - 58.33)^{2} + 16(64.6875 - 58.33)^{2} + 16(46.5625 - 58.33)^{2}$$

$$= 16(5.42)^{2} + 16(6.3575)^{2} + 16(-11.7675)^{2}$$

$$= 470.0224 + 646.6849 + 2215.5849$$

$$= 3332.292$$

Step 2c: Calculate SS_{AxB}

$$SS_{A\times B} = SS_M - SS_A - SS_B$$

$$SS_{A\times B} = SS_M - SS_A - SS_B$$

= 5479.167 - 168.75 - 3332.292
= 1978.125

B ₁ : N	None
65	50
70	55
60	80
60	65
60	70
55	75
60	75
55	65
Moan	Nono

Mea	an	Non	ıe
=	63	.75	

B ₂ : 2	Pints
70	45
65	60
60	85
70	65
65	70
60	70
60	80
50	60

Mean 2 Pints = 64.6875

B ₃ : 4 Pints				
55	30			
65	30			
70	30			
55	55			
55	35			
60	20			
50	45			
50	40			

Mean 4 Pints = \$46.5625

Two-way ANOVA – example (5)

Step 3: Calculate SS_R

$$SS_{R} = s_{group1}^{2}(n_{1} - 1) + s_{group2}^{2}(n_{2} - 1) + s_{group3}^{2}(n_{3} - 1) \dots s_{groupn}^{2}(n_{n} - 1)$$

$$SS_{R} = s_{group1}^{2}(n_{1} - 1) + s_{group2}^{2}(n_{2} - 1) + s_{group3}^{2}(n_{3} - 1)$$

$$+ s_{group4}^{2}(n_{4} - 1) + s_{group5}^{2}(n_{5} - 1) + s_{group6}^{2}(n_{6} - 1)$$

$$= (24.55 \times 7) + (106.7 \times 7) + (42.86 \times 7)$$

$$+ (156.7 \times 7) + (50 \times 7) + (117.41 \times 7)$$

$$= 171.85 + 746.9 + 300 + 1096.9 + 350 + 821.87$$

$$= 3487.52$$

Tests of Between-Subjects Effects

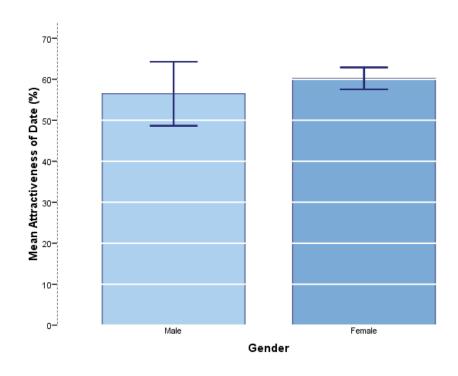
Dependent Variable: Attractiveness of Date								
Source	Type III Sum of Squares	df	Mean Square	F	Siq.			
Gender	168.750	1	168.750	2.032	.161			
Alcohol	3332.292	2	1666.146	20.065	.000			
Gender * Alcohol	1978.125	2	989.062	11.911	.000			
Error	3487.500	42	83.036					


a. R Squared = .611 (Adjusted R Squared = .565)

F-statistic for each factor (gender, alcohol, gender*alcohol):

$$\frac{MS_{factor}}{MS_{error}}$$
 F-distributed

Interpretation: Main Effect Alcohol



There was a significant main effect of the amount of alcohol consumed at the night-club, on the attractiveness of the mate that was selected, F(2, 42) = 20.07, p < .001.

Interpretation: Main Effect Gender

There was a no significant main effect of gender on the attractiveness of selected mates, F(1, 42) = 2.03, p = .161.

Interpretation: Interaction

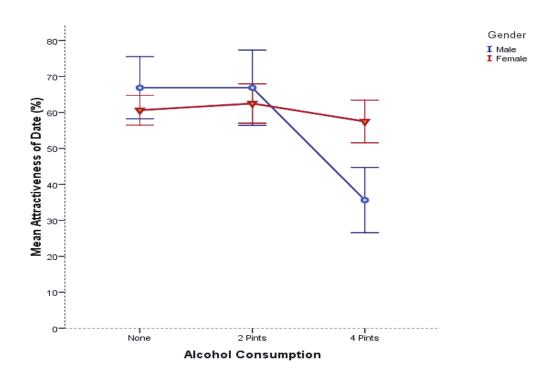
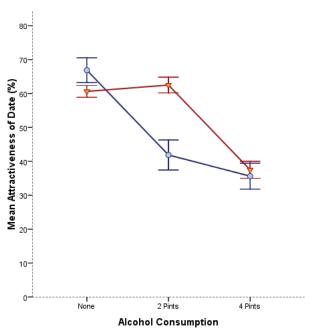
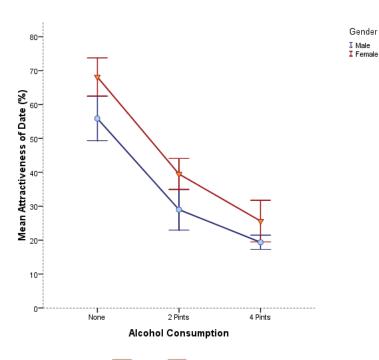



FIGURE 13.13
Graph of the interaction of gender and alcohol consumption in mate selection


There was a significant interaction between the amount of alcohol consumed and the gender of the person selecting a mate, on the attractiveness of the partner selected, F(2, 42) = 11.91, p < .001.

Is there likely to be a significant interaction effect?

12.04.2019 Seite 246

Gender

I Female

I Male

Fallzahlschätzung

- Je größer die Fallzahl desto geringer die Wahrscheinlichkeit für den Fehler 2. Art, desto höher die Präzision der Schätzung
- Fallzahlschätzung bedingt bereits die Definition des Testproblems durch Operationalisierung der Fragestellung, durch Formulierung von Null- und Alternativhypothese
- Fallzahlschätzung bedingt das Festlegen einer speziellen Alternative. "Es gibt keinen Unterschied zwischen den Gruppen" genügt nicht. Die Größe des zu erwartenden Unterschieds muss festgelegt werden.
- Fallzahlschätzung bedingt bereits die Auswahl des statistischen Tests, die Definition von Fehler 1. und 2. Art

Sample size estimation

Question: How many individuals do you have to include in your study to get a reliable result?

- \rightarrow We want to maximize the probability for rejecting H_0 , if H_1 is true
- \rightarrow while keeping the Type I error α fixed

What do you have to know to calculate the sample size needed?

- 1. Power (typically set to 80% or 90%)
- 2. Type I error α (typically set to $\alpha = 0.05$)
- 3. The difference you want to find (for t-tests: the mean difference between groups)
- 4. standard deviation / measure of variance

Example

- Hypothesis: H_0 : $\mu_A = \mu_B$ versus H_1 : $\mu_A \neq \mu_B \rightarrow$ two-sided t-test
- You consider a difference of 10 as relevant
- From former studies, you know, that the standard deviation is ~ 15 mmHG
- So far, you have recruited 20 patients (10 in each treatment arm)
- → What is your power?

Sample size estimation

Fallzahlschätzung für unverbundene Stichproben und stetige Zielgrößen

Ende Neustart Hilfe!									
 Fallzahlberechnung für vorgegebene Power Powerberechnung für vorgegebene Fallzahl Entdeckbare Differenz für vorgegebene Fallzahl und Power 									
Eingabe von μ ₁ :		Eingabe von	ա ₂ ։						
Eingabe von σ:	15	Differenz De	lta:	10					
○ Einseitiger Test ② Zweiseitiger Test									
Eingabe von α (Standard ist 0.05):			.05						
Eingaber der Power (Standard ist 0.80):			0.294						
Die Fallzahl für jede Gruppe ist:			10						
Berechne									

Vergleich von Häufigkeiten zweier unverbundener Stichproben MEDIZINISCHE UNIVERSITÄT INNSBRUCK

In einer Karzinomstudie erhofft man sich, die bisher mit der Standardtherapie (S) erreichte Rezidivrate von 50% mit einer neuen Therapie (T) auf 40% zu senken.

Für eine kontrollierte klinische Studie mit den beiden Therapiegruppen S und T und dem Zielkriterium 'Rezidivrate' sowie den weiteren Festlegungen (zweiseitiger Test, Irrtumswahrscheinlichkeit 5%, Power 80%) ergeben sich folgende Parameter für die Fallzahlberechnung: p1 = 0.5, p2 = 0.4, $\alpha = 0.05$, $1-\beta = 0.80$.

ergibt eine Fallzahl von 388 Patienten für jede Behandlungsgruppe.

Vergleich von Mittelwerten zweier unverbundener Stichproben MEI

In einer Hypertoniestudie erhofft man sich, die bisher mit der Standardtherapie (S) erreichte durchschnittliche Blutdrucksenkung von 15 mm mit einer neuen Therapie (T) auf 20 mm zu senken.

Für eine kontrollierte klinische Studie mit den beiden Therapiegruppen S und T und dem Zielkriterium 'Senkung des Blutdrucks' sowie den weiteren Festlegungen (Standardabweichung = 15, zweiseitiger Test, Irrtumswahrscheinlichkeit 5%, Power 80%) ergeben sich folgende Parameter für die Fallzahlberechnung: $\mu 1 = 15$, $\mu 2 = 20$, $\sigma = 15$, $\alpha = 0.05$, 1- $\beta = 0.80$

ergibt eine Fallzahl von 142 Patienten für jede Behandlungsgruppe.

Vergleich von Mittelwerten zweier verbundener Stichproben

In einer Phase-II-Studie soll überprüft werden, ob sich ein neues Medikament zur Blutdrucksenkung eignet. Geeignet ist das Medikament dann, wenn bei Hypertonikern mit einem durchschnittlichen systolischen Blutdruck von 150 mm eine Senkung um mindestens 10 mm erreicht wird.

Für diese klinische Studie lautet das Zielkriterium 'Differenz des Blutdrucks vor und nach Behandlung'. Mit den weiteren Festlegungen (Standardabweichung = 15, zweiseitiger Test, Irrtumswahrscheinlichkeit 5%, Power 80%) ergeben sich folgende Parameter für die Fallzahlberechnung:

$$\mu 1 = 150$$
, $\mu 2 = 140$, $\sigma = 15$, $\alpha = 0.05$, 1 - $\beta = 0.80$

ergibt eine Fallzahl von 20 Patienten.

Vergleich von Überlebenszeiten zweier unverbundener Stichproben

In einer Karzinomstudie erhofft man sich, die bisher mit der Standardtherapie (S) erreichte mediane Überlebenszeit von 36 Monaten mit einer neuen Therapie (T) auf 48 Monate zu erhöhen.

Für eine kontrollierte klinische Studie mit den beiden Therapiegruppen S und T und dem Zielkriterium 'Überlebenszeit' sowie den weiteren Festlegungen (Rekrutierungszeit=24 Monate, Nachbeobachtungszeit = 36 Monate, zweiseitiger Test, Irrtumswahrscheinlichkeit 5%, Power 80%)

ergibt eine Fallzahl von 349 Patienten für jede Behandlungsgruppe.

Checklist für Fallzahlschätzung (Testproblem)

- Studiendesign mit
- Auswahl des Hauptzielkriteriums
- Zu erwartender Unterschied und Angabe eines Variationsmaßes
- Begründung dafür Literatur oder Vorstudie
- Fehler 1. Art (üblicherweise 0,05)
- Fehler 2. Art (0,1 oder 0,2)
- Auswahl des statistischen Tests
- Falls mehrere Hypothesen formuliert werden, Korrektur des Fehler
 1. Art oder Hierarchisierung der Hypothesen
- Drop-Out Rate berücksichtigen

Übung: Berechnen Sie die statistische Power

Table 2. Effect of Cytisine on Smoking Cessation.*						
Outcome	Cytisine (N = 370)	Placebo (N = 370)	Percentage-Point Difference (95% CI)	Relative Rate (95% CI)†		
	percent (number)				
Primary outcome: abstinence for 12 mo	8.4 (31)	2.4 (9)	6.0 (2.7-9.2);	3.4 (1.7-7.1)		
Abstinence for 6 mo	10.0 (37)	3.5 (13)	6.5 (2.9-10.1);	2.9 (1.5-5.3)		
Point prevalence at 12 mo	13.2 (49)	7.3 (27)	5.9 (1.6–10.3)§	1.8 (1.2–2.8)		

Kategoriale Daten und 4-Felder Tafeln

Dr. Hanno Ulmer

hanno.ulmer@imed.ac.at
Innsbruck, Oktober 2010

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Zusammenhänge qualitativ: Vierfelder Tafel

Tab.1 Vierfeldertafel zur Untersuchung des Effekts einer intensivierten Insulintherapie auf die Entwicklung einer Neuropathie in 5 Jahren bei 622 Diabetikern (7)

Interventionsstudie

		Neuropathie ja nein Summ		
Gruppe	Kontrolle	52	255	307
	Intervention	21	294	315
Summe		73	549	622

Tab. 2 Vierfeldertafel zur Untersuchung des Hämoccult-Test zum Screening auf ein kolorektales Karzinom bei 7493 Personen (1)

Diagnostische Studie

		kolorektales Karzinom		
		ja	nein	Summe
Hämoccult-Test	+	22	418	440
	-	10	7 043	7053
Summe		32	7461	7493

	Outcome positiv	Outcome negativ	
Exposition positiv	а	b	Rel. Risiko = $= \frac{a}{a+b} / \frac{c}{c+d}$
Exposition negativ	С	d	Odds Ratio $= \frac{a.d}{b.c}$
	Abs. Risiko Reduk. $= \frac{a}{a+b} - \frac{c}{c+d}$	Number needed to treat (NNT) = 1/ARR	

Tab.1 Vierfeldertafel zur Untersuchung des Effekts einer intensivierten Insulintherapie auf die Entwicklung einer Neuropathie in 5 Jahren bei 622 Diabetikern (7)

		Neuropathie ja nein Summ		Summe
Gruppe	Kontrolle	52	255	307
Summe	Intervention	21 73	294 549	315 622

	Outcome positiv	Outcome negativ	
Exposition positiv	52 (16,9%)	255	$RR = 2,5$ $= \frac{a}{a+b} / \frac{c}{c+d}$
Exposition negativ	21 (6,7%)	294	$OR = 2,9$ $= \frac{a}{b} / \frac{c}{d} = \frac{a.d}{b.c}$
	$ARR = 10,2\%$ $= \frac{a}{a+b} - \frac{c}{c+d}$	NNT = 9,8 NNT = 1/ARR	

Relative Risiken

- Relatives Risiko (RR): Das Verhältnis der Risiken für ein bestimmtes Ereignis (z.B. Neuropathie) in zwei Vergleichsgruppen
- Odds ratio (OR): «Odds» entspricht der «Chance», dass ein bestimmtes Ereignis eintritt, bezeichnet also etwas Ähnliches wie ein Risiko, wird aber (wie beim Pferderennen) als Verhältnis (z.B. 1:9) angegeben.
- Hazard Ratio (HR): «Hazard» bezeichnet die Wahrscheinlichkeit, dass ein bestimmtes Ereignis eintritt. Dabei wird der Zeitpunkt berücksichtigt, wann das Ereignis eintritt. Im Gegensatz zum relativen Risiko wird also mit einer «hazard ratio» nicht nur ein Ausbleiben, sondern auch ein späteres Eintreffen eines Ereignisses als Effekt erfasst.

Logistische Regressionsanalyse

- Untersuchung / Modellierung von prognostischen Faktoren für binäre Outcomes bei gleichzeitiger Adjustierung für Störfaktoren ("confounders")
- Multivariate Erweiterung zur Kontingenztafelanalyse und Chi-Quadrat Test
- Berechnet wird das adjustierte Relative Risiko oder das adjustierte Odds Ratio

kurzgefasst: Mit Hilfe der multiplen logistischen Regression lässt sich der Einfluss erklärender Variablen (Risikofaktoren) auf eine binäre Zielvariable (z.B. Krankheit ja/nein) untersuchen. Aus den Regressionskoeffizienten lassen sich adjustierte Odds Ratios als Maß für die Stärke des Zusammenhangs berechnen.

Tab. 2 Multiple logistische Regressionsanalyse für die Entwicklung einer diabetischen Nephropathie nach 6 Jahren bei 480 Typ 1 Diabetikern.

Risikofaktor	Regressionskoeffizient	Standardfehler	p-Wert	Differenz für Odds Ratio	Odds Ratio	95% Konfidenzintervall
Achsenabschnitt	- 8,980	1,736	0,0001			
HbA _{1c}	+0,464	0,091	0,0001	1%	1,59	1,33 – 1,90
diast. Blutdruck	+0,048	0,019	0,0148	5 mm Hg	1,27	1,05 – 1,54
Diabetesdauer	+0,004	0,018	0,8220	5 Jahre	1,02	0,85 – 1,22
Geschlecht	- 0,025	0,249	0,9212	männl. vs. weibl.	0,98	0,60 – 1,59

	Goldstandard positiv	Goldstandard negativ	
Neues Verfahren positiv	а	b	Pos. Präd. W. $= \frac{a}{a+b} *100$
Neues Verfahren negativ	С	d	Neg. Präd. W. $= \frac{c}{c+d} * 100$
	Sensitivität	Spezifität	
	$=\frac{a}{a+c}*100$	$= \frac{d}{b+d} *100$	

Tab. 2 Vierfeldertafel zur Untersuchung des Hämoccult-Test zum Screening auf ein kolorektales Karzinom bei 7493 Personen (1)

		kolorekt ja	kolorektales Karzinom ja nein Summe		
Hämoccult-Test	+	22	418	440	
	-	10	7 043	7053	
Summe		32	7461	7493	

	Goldstandard positiv	Goldstandard negativ	
Neues Verfahren positiv	22	418	$PPV = 5\%$ $= \frac{a}{a+b} *100$
Neues Verfahren negativ	10	7043	$NPV = 99,9\%$ $= \frac{c}{c+d} *100$
	Sensitivität 68,8%	Spezifität 94,4%	
	$=\frac{a}{a+c}*100$	$= \frac{d}{b+d} *100$	

Formel von Bayes

Thomas Bayes ~1702 - 1761

PPV = (Sensitivität x Prävalenz) / (Sensitivität x Prävalenz +(1- Spezifität) x (1-Prävalenz))

Beispiel Mammografie:

Prävalenz: 1%, Sensitivität: 90%, Spezifität: 98%

$$ppV = \frac{0.90 \cdot 0.01}{0.90 \cdot 0.01 + 0.02 \cdot 0.99} = 0.31$$

Zur Diskussion

Brustkrebs-Früherkennung

durch Mammographie-Screening

Zahlen für Frauen ab 50 Jahre, die 10 Jahre oder länger am Screening teilgenommen haben

Nutzen	1000 Frauen ohne Screening	1000 Frauen mit Screening
Wie viele Frauen sind an Brustkrebs gestorben?	5	4
Wie viele sind insgesamt an Krebs gestorben?	21	21
Schaden		
Wie viele Frauen ohne Krebs wurden durch Fehl- diagnosen falsch alarmiert oder hatten eine Biopsie?	¥ -/	100
Wie viele gesunde Frauen wurden fälschlicherweise mit Brustkrebs diagnostiziert und behandelt?	1 /2	5

Alle Daten aus G
øtzsche, PC, J
ørgensen, KJ (2013). Cochrane Database of Systematic Reviews (6): CD001877. Die Zahlen in der Faktenbox sind gerundet. Wo keine Zahlen für Frauen ab 50 Jahre verfügbar sind, beziehen sie sich auf Frauen ab 40 Jahre, www.harding-center.mpg.de

Prostatakrebs-Früherkennung

durch PSA-Test und Tastuntersuchung der Prostata

Zahlen für Männer ab 50 Jahre. Vergleich Nichtteilnahme mit 11-jähriger Teilnahme

Nutzen	1000 Männer ohne Früherkennung	1000 Männer mit Früherkennung
Wie viele Männer sind an Prostatakrebs gestorben?	7	7*
Wie viele Männer sind insgesamt gestorben?	210	210
Schaden		
Wie viele Männer haben nach einer Biopsie erfahren, dass ihr Testergebnis ein Fehlalarm war?	1-/	160
Wie viele gesunde Männer wurden fälschlicherweise mit Prostatakrebs diagnostiziert und behandelt**?	<u> </u>	20

Prostatakrebs gestorben. ** Z.B. operative Entfernung der Prostata oder Strahlentherapie, was zu Inkontinenz oder Impotenz führen kann.

RISK LITERACY

1 - 10

Quelle: Ilic et al. (2013) Cochrone Database of Systematic Reviews, Art. No.:CD004720.

Das bedeutet: Von 1000 M\u00e4nnern (Alter: 50+) mit Fr\u00fcherkennung sind innerhalb von 11 Jahren etwa 7 an

Gebärmutterhalskrebs-Früherkennung durch den Pap-Test (auch "Abstrich" genannt) für Frauen ab 20 Jahre.

RISK LITERACY

Alle Angaben beziehen sich auf den Nutzen und Schaden pro Jahr.

zu Schwangerschaftskomplikationen führen kann), psychische Belastungen wie Angst.

diagnostiziert*?

Nutzen	100.000 ohne Screening	100.000 mit Screening
Wie viele Frauen erkrankten an Gebärmutterhalskrebs?	40	15
Wie viele Frauen verstarben an Gebärmutterhalskrebs?	6	3
Wie viele Frauen verstarben insgesamt an Krebs?	230	230
Schaden		
Wie viele gesunde Frauen wurden durch das Screening	7 /	5000

Gebärmutterhalskrebs-Prävention

Bei wie vielen Frauen trat eine Verengung der Atemwege

durch die HPV-Impfung mit Gardasil. Zahlen für Frauen von 12-25 Jahren, die noch keinen sexuellen Kontakt hatten. Die Angaben beziehen sich auf ein Jahr.

Nutzen für Frauen, die neben der HPV-Impfung auch am Pap-Test teilnehmen	100.000 ohne Impfung	100.000 mit Impfung
Wie viele Frauen erkrankten an Gebärmutterhalskrebs?	15	11
Wie viele Frauen verstarben an Gebärmutterhalskrebs?	3	2
Nebenwirkungen		

mit schwerer Luftnot auf?

Bei wie vielen Frauen traten Fieber und Empfindlichkeit 1.000 - 10.000 der Injektionsstelle auf? Bei wie vielen Frauen traten unspezifische Gelenk-10 - 1.000 entzündungen oder Nesselsucht auf?

Quellen: Gesundheitsberichterstattung 2009 des Statistischen Bundesamtes. Siebert, Muth, Sroczynski et al. (2003) http:// portal.dimdi.de/de/hta/hta_berichte/hta067_bericht_de.pdf. Siebert, Sroczynski, Hillemanns et al. (2006) Eur J Public Health 16. Es liegen keine randomisiert-kontrollierten Studien vor. Die Zahlen stammen aus Bevölkerungsstatistiken, die seit Einführung des

* Dies führt zu Testwiederholungen, Biopsien, Operation/Konisation (Herausschneiden eines Kegels am Gebärmutterhals, was späti

Quellen: Gesundheitsberichterstattung 2009 des Statistischen Bundesamtes. FUTURE II Study Group (2007) N Engl J Med 356.

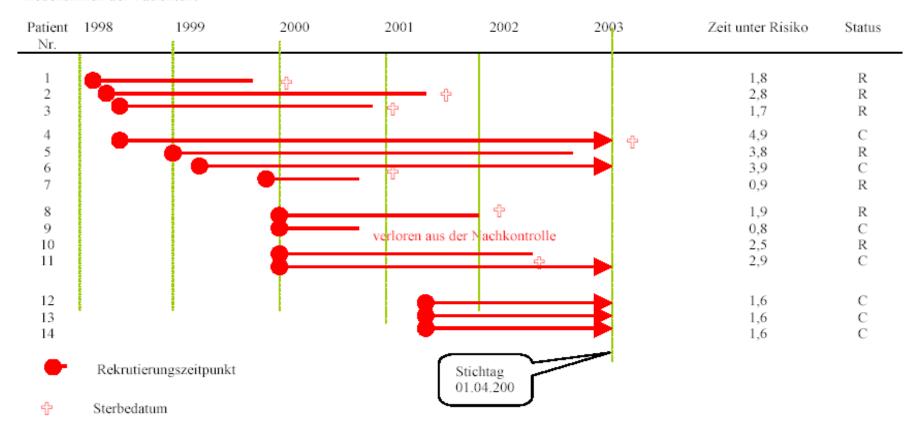
Übung: Berechnen Sie das relative und absolute Risiko

Table 2. Effect of Cytisine on Smoking Cessation.*					
Outcome	Cytisine (N=370)	Placebo (N = 370)	Percentage-Point Difference Relative Ra (95% CI) (95% CI)		
percent (number)					
Primary outcome: abstinence for 12 mo	8.4 (31)	2.4 (9)	6.0 (2.7–9.2)‡	3.4 (1.7-7.1)	
Abstinence for 6 mo	10.0 (37)	3.5 (13)	6.5 (2.9–10.1)‡	2.9 (1.5-5.3)	
Point prevalence at 12 mo	13.2 (49)	7.3 (27)	5.9 (1.6–10.3)§	1.8 (1.2–2.8)	

Überlebenszeitanalyse (Survival Analysis)

Literatur: Ziegler A., Lange S., Bender R.: Statistik-Supplement DMW

Überlebenszeitanalyse (Survival Analysis)


- Time-to-Event Analyse Ereigniszeitanalyse
- Zwei Variablen:
 - Zeit
 - Ereignis: bereits eingetreten (noch) nicht eingetreten = zensiert

Kaplan-Meier-Schätzung der Überlebensfunktion an einem Beispiel mit 14 Patienten

Lebenslinien der Patienten:

Überlebenszeitanalyse (Survival Analysis) MEDIZINISCHE UNIVERSITÄT INNSBRUCK

Kaplan-Meier Methode

KAPLAN, E. L. and MEIER, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 457-481.

- Log-Rank Test
- Cox Proportional Hazards Modelle

Cox, D. R. (1972). Regression Models and Life Tables (with discussion). J. R. Statistic. Soc. 34: 187-220.

Kaplan-Meier Methode

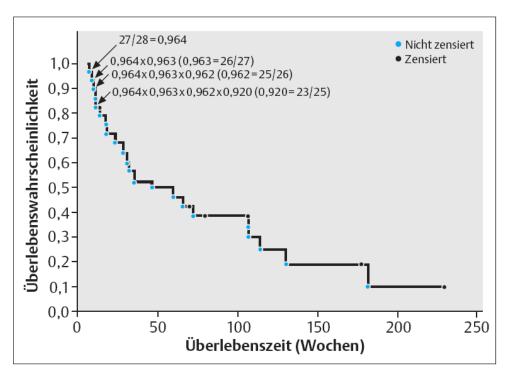


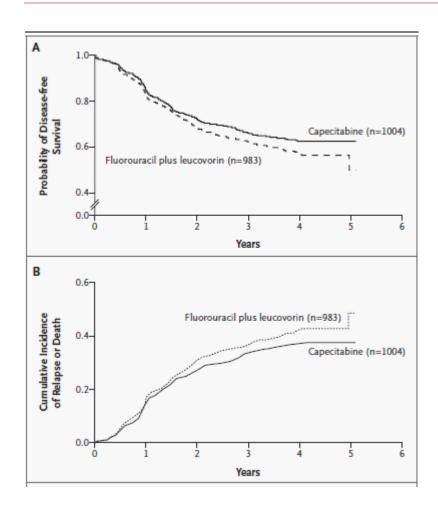
Abb. **1** Kaplan-Meier Kurve für die Überlebenszeit der 28 Zungenkrebspatienten mit diploidem Tumor. Es wird die Wahrscheinlichkeit gezeigt, dass ein Patient eine Zeit (in Wochen) überlebt.

Tab. 1 Überlebenszeit (Wochen) von 28 Männern mit Zungenkre diploidem DNA-Tumorprofil – Daten aus Sickle-Santanello e

Verstorben			Zensiert
1	18	69	8
3	23	104	67
4	26	104	76
5	27	112	104
5	30	129	176
8	42	181	231
12	56		
13	62		

Log-Rank Test

Vergleich von Überlebenszeiten


- H₀: Es besteht eine Gleichverteilung der Überlebenszeiten
- H₁: Die Überlebenszeiten sind unterschiedlich verteilt

Einschränkungen

- Probleme bei Überscheidungen der Kurven
- Alternative Peto-Test

Disease-free/Overall Survival Incidence of Relapse/Death

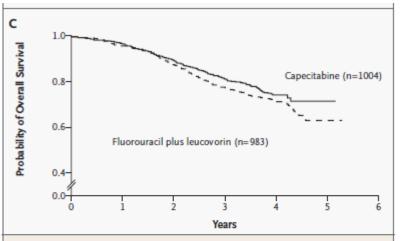


Figure 1. Disease-free Survival, Incidence of Relapse or Death, and Overall Survival among Patients Receiving Fluorouracil plus Leucovorin or Capecitabine (Intention-to-Treat Population).

Panel A shows Kaplan—Meier estimates of disease-free survival. The upper limit of the confidence interval of the hazard ratio was significantly below both the predefined margins, 1.25 and 1.20, for equivalence (P<0.001 in both cases). The analysis for superiority showed a trend favoring capecitabine (hazard ratio, 0.87 [95 percent confidence interval, 0.75 to 1.00]; P=0.05). Panel B shows the cumulative incidence of relapse or death; only deaths related to colon cancer or the study treatment were included. A Cox proportional-hazards model showed that relapse-free survival in the capecitabine group was statistically superior to that in the fluorouracil-plus-leucovorin group (P=0.04; hazard ratio, 0.86; 95 percent confidence interval, 0.74 to 0.99). Panel C shows Kaplan—Meier estimates of overall survival. The analysis for survival showed a trend favoring capecitabine (hazard ratio, 0.84 [95 percent confidence interval, 0.69 to 1.01]; P=0.07).

Cox Proportional Hazards Regressionsanalyse

- Untersuchung / Modellierung von prognostischen Faktoren für Ereigniszeiten bei gleichzeitiger Adjustierung für Störfaktoren ("Confounder")
- Multivariate Erweiterung zu Kaplan-Meier und Log-Rank Test
- Berechnet wird die (adjustierte) Hazard Ratio als Maß für das relative Risiko

COX Modell für Versuche bis zur Lebendgeburt MEDIZINISCHE UNIVERSITÄT INNSBRUCK

Variablen	Signifikanz Hazard Ratio (95% CI)			
Alter 30 – 34,9 Jahre	0,008	0,82	(0,70 - 0,95) vs. <30J	
Alter 35 - < 39,9 Jahre	<,001	0,58	(0,46 - 0,65)	
Alter 40 +	<,001	0,15	(0,11 - 0,22)	
Blastozystentransfer	<0,01	2,13	(1,90 - 2,40)	
Endometriose	0,51	0,95	(0,80 - 1,11)	
PCO	0,24	0,92	(0,80 - 1,06)	

Mit Hilfe des Cox-Modells läßt sich der Einfluß von erklärenden Variablen auf eine Ereigniszeit untersuchen. Aus den Regressionskoeffizienten lassen sich adjustierte Hazard Ratios für die Stärke des Zusammenhangs berechnen.

Design of Experiments

Dr. Hanno Ulmer

hanno.ulmer@imed.ac.at
Innsbruck, Oktober 2010

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

DOE Grundlagen

- DOE = Design of Experiments
- Idee:
 - Simultane Bewertung von mehreren Einflussfaktoren
 - Auswahl der Zielvariable
 - Planung des Experiments, Anzahl der Durchläufe
 - Verwendung von ANOVA/Regressionsanalyse
- Anwendungen: Naturwissenschaftliche Experimente, Marktforschung, Simulationsexperimente
- Software (MODDE, SAS JMP,...) erlaubt
 - Auswahl des experimentellen Designs
 - Analyse der Ergebnisse des Experiments

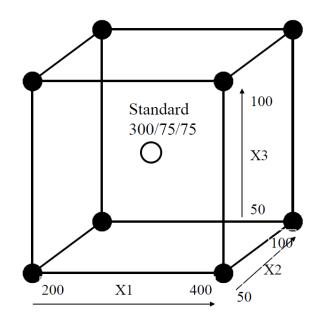
DOE Grundlagen

- Input: Beeinflussbare Faktoren x1, x2, x3
- Output Y: Response, wird gemessen
- Noise: bekannte oder unbekannte Störungen
- Bestimmung der Koeffizienten c1, c2, c3 mittels
 Varianzanalyse (ANOVA)

Modell
$$y = f(x_1,...,x_n) = c_1 \cdot x_1 + c_2 \cdot x_2 + ... + c_{12} \cdot x_1 \cdot x_2 + ... + c_{11} \cdot x_1^2$$

Geschichte von DOE

- The **agricultural** origins, 1918 1940s
 - R. A. Fisher & his co-workers
 - Profound impact on agricultural science
 - Factorial designs, ANOVA
- The first industrial era, 1951 late 1970s
 - Box & Wilson, response surfaces
 - Applications in the chemical & process industries
- The **second industrial** era, late 1970s 1990
 - Quality improvement initiatives in many companies
 - Taguchi and robust parameter design, process robustness
- The modern era, beginning circa 1990
 - Wide use of computer technology in DOE
 - Expanded use of DOE in Six-Sigma and in business
 - Use of DOE in computer experiments



Overview of DOE - CakeMix application

- Three factors varied: Flour (200-400g), Shortening (50-100g), and Eggpowder (50-100g)
- Response: Taste of resulting cake

Cake Mix Experimental Plan

Cake No	Flour	Shortening	Egg Powder	Taste
1	200	50	50	3.52
2	400	50	50	3.66
3	200	100	50	4.74
4	400	100	50	5.20
5	200	50	100	5.38
6	400	50	100	5.90
7	200	100	100	4.36
8	400	100	100	4.86
9	300	75	75	4.73
10	300	75	75	4.61
11	300	75	75	4.68



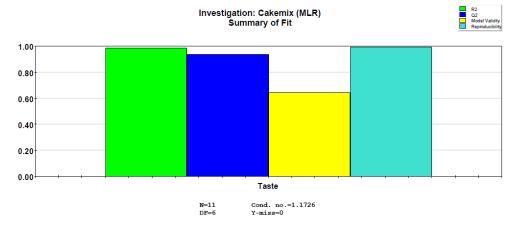
CakeMix Beispiel mit MODDE

Overview of steps in DOE - part I

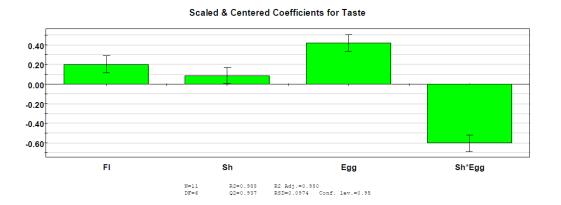
1. Define Factors

2. Define Response(s)

3. Create Design(Make experiments)


■ Worksheet									
	1	2	3	4		5	6	7	8
1	Exp No	Exp Name	Run Order	Incl/Ex	cl	Flour	Shortening	Eggpowder	Taste
2	1	N1	4	Incl	•	200	50	50	3.52
3	2	N2	5	Incl	•	400	50	50	3.66
4	3	N3	11	Incl	•	200	100	50	4.74
5	4	N4	6	Incl	•	400	100	50	5.2
6	5	N5	7	Incl	•	200	50	100	5.38
7	6	N6	9	Incl	•	400	50	100	5.9
8	7	N7	2	Incl	•	200	100	100	4.36
9	8	N8	8	Incl	•	400	100	100	4.86
10	9	N9	10	Incl	•	300	75	75	4.73
11	10	N10	1	Incl	•	300	75	75	4.61
12	11	N11	3	Incl	•	300	75	75	4.68

CakeMix Beispiel mit MODDE



Overview of steps in DOE - part II

4. Make Model

5. Interpret Model

Investigation: Cakemix (MLR)

Designs

- Full Factorial Design:
 Alle Level Kombinationen werden getestet
- Latin Square Design: nur ein zufällige Teilmenge aller Level-Kombinationen werden getestet
- Plackett-Burman Designs: sehr effizient, große Anzahl von Hauptfaktoren wird mit so wenig Durchgängen wie möglich untersucht
- Box-Behnken, Central Composite, Orthogonal Arrays, Center Point Designs, etc.

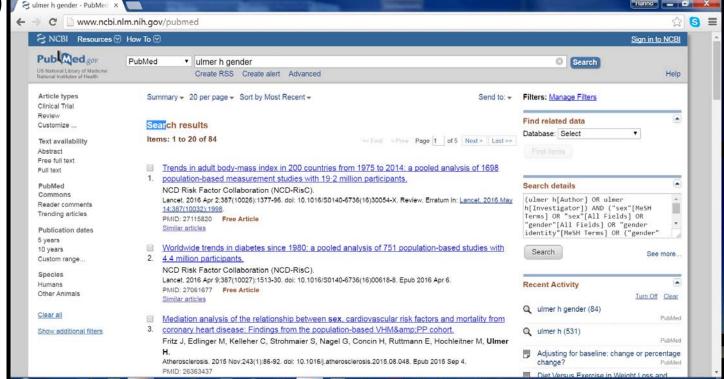
DOE Beispiel Crash Test

Beispiel Crash-Test

- Jeder Faktor hat mehrere Level
 - Stetige (z.B. Geschwindigkeit: 0 100 km/h)
 - <u>Diskrete</u> (z.B. Airbag: an/aus)
- Einteilung der stetigen Level in sinnvolle Stufen
 - Z.B. Geschwindigkeit niedrig, mittel, hoch
- Zielgröße: Kraftwirkung auf Dummy.
- Faktoren, Level, gewünschte Genauigkeit werden im Versuchsplan festgehalten

Dr. Hanno Ulmer

hanno.ulmer@imed.ac.at


Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Pubmed

(ulmer h[Author] OR ulmer h[Investigator]) AND ("sex"[MeSH Terms] OR "sex"[All Fields] OR "gender"[All Fields] OR "gender identity"[MeSH Terms] OR ("gender"[All Fields] AND "identity"[All Fields]) OR "gender identity"[All

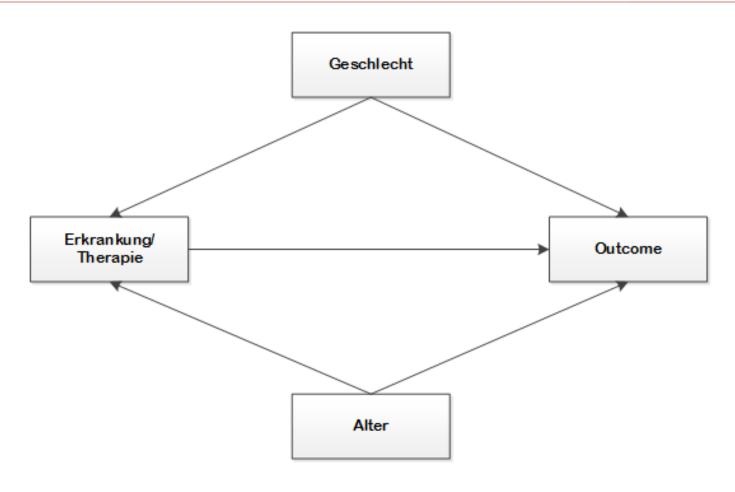
Fields])|

Verwendung

- sex-specific
- by sex
- age-sex-groups
- Independent of sex
- sex-matched
- after adjustment for sex, adjusting for sex
- stratified by sex
- age- and sex standardized

Verwendung

- Auswertung separat für Männer und Frauen, Unterschiede zwischen Männer und Frauen sex-specific, by sex, sex-groups
- Geschlecht als Störvariable (Confounder) und Berücksichtigung dieses Einflusses adjusting for sex, independent of sex, stratified by sex, sex standardized
- Im Studiendesign (z.B. Fall-Kontroll Studie) wird jedem m\u00e4nnlichen Fall eine m\u00e4nnliche Kontrolle und jedem weiblichen Fall eine weibliche Kontrolle zugewiesen sex-matched
- Randomisierung führt zu gleicher Anzahl von Männern und Frauen


Für den Statistiker

- Ist Geschlecht in der Regel oft ein Störfaktor (Confounder) oder Effektmodifikator (effect modifier)
- Alter und Geschlecht sind die wichtigsten Einflussfaktoren in der Medizin,
- deren Einfluss muss entweder im Studiendesign durch Randomisierung und Matching oder nachträglich in der Analyse durch separate Auswertung, Standardisierung, Adjustierung oder Stratifizierung (Gewichtung) berücksichtigt werden
- Voraussetzung: Variable Geschlecht muss vorhanden sein!

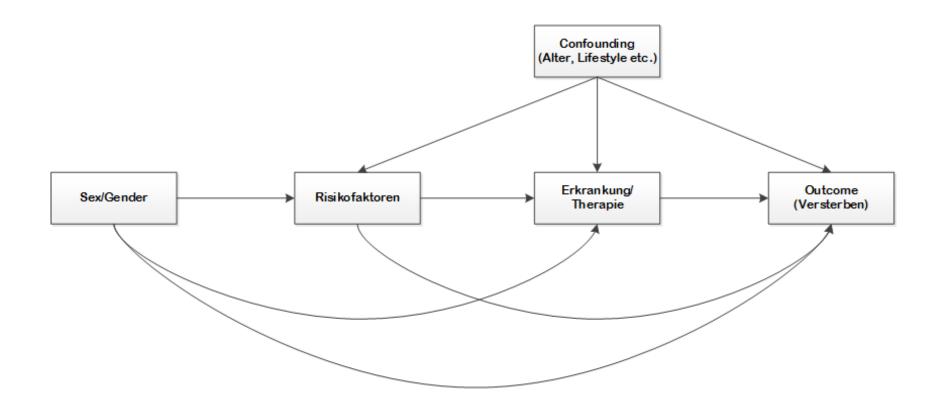
DAG: Geschlecht und Alter als Confounder

Confounding/Modification/Mediation

 Epidemiologen sprechen von Verschleierung oder Confounding, wenn die Assoziation zwischen einer Exposition und einem Outcome durch eine Störgröße überlagert oder verzerrt wird. Diese Störgröße heißt Confounder (Zitat aus Razum O et al. Epidemiologie für Dummies).

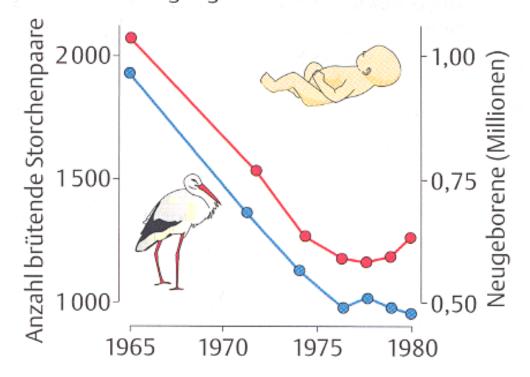
Zu unterscheiden von:

- Wenn sich die Stärke einer Exposition und einem Outcome verändert wenn eine oder mehrere weitere Variablen hinzukommen, dann spricht man von Effektmodifikation (Cholesterin Beispiel).
- Intermediärvariablen (**Mediatoren**) sind Zwischenstufen in der Kausalkette Exposition und Outcome (KHK Beispiel).


Geschlechtsunterschiede und Kausalität

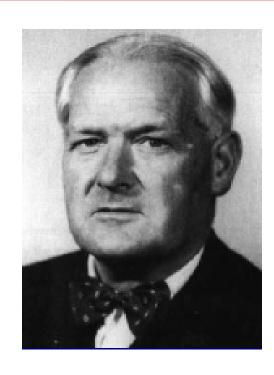
- Geschlechtsunterschiede können nur beobachtet werden
- Geschlechtsunterschiede können zwar in einem RCT beobachtet werden, aber nicht per se durch einen RCT untersucht werden
- Der Faktor Geschlecht kann nicht randomisiert werden
- Aber: Geschlecht ist ab Geburt defacto natürlich randomisiert
- Für die Gender Medizin Forschung gelten die Limitationen der Beobachtungsstudien,
 - Cave: Selection Bias und Informations Bias!
- Confounding ist per Definition nicht möglich
- Außer Frage stehende Fakten: Männer Prostatakrebs, etc.

DAG: Geschlecht als Untersuchungsobjekt


Glauben Sie den Ergebnissen einer Studie?

- Konzepte zur Kausalität z.B. von Henle&Koch (1880),
 Hill (1965) oder Rothman (1976)
- Assoziation
 (negativer oder positiver Zusammenhang)
- Kausalität

 (Risikofaktor als
 (Mit-)Ursache einer
 Krankheit)


Korrelation Abnahme brütender Storchenpaare/ Geburtenrückgang in der BRD 1965 – 1980

Statistische Assoziation oder Kausalität ??

- Kausalitätskriterien nach
- Sir Austin Bradford-Hill:
 - Temporalität
 - Konsistenz (Meta-Analysen,Systematische Reviews)
 - Biologischer Gradient
 - Stärke des Effekts (z.B. doppeltes Risiko)
 - u.a.

Systematische Fehler, Confounding

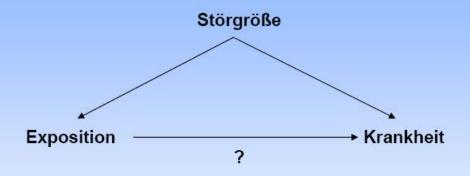
Selection Bias

- Nichterreichen von Berufstätigen bei Telefonumfragen

Information Bias

- Fehlklassifikation / Fehldiagnosen,
- Messfehler

Confounding


Mangelnde Berücksichtigung von Störgrößen
 Scheinassoziation von Alkohol und Lungenkarzinom über Rauchen erklärbar

Systematische versus zufällige Fehler

- Systematische Fehler führen zu einer Verzerrung (Bias) der Effektschätzer (RR, OR etc.)
- Zufällige Fehler (durch zu geringe Fallzahl, siehe Kapitel Fallzahlschätzung) erniedrigen die Präzision
- Systematische Fehler erniedrigen die Validität
- Die Validität hat Priorität vor der Präzision.

Störgrößen (Confounder)

z.B. unterschiedliches Alter in den Therapiegruppen Alter beeinflusst den Blutdruck und womöglich die Therapie.

Mögliche Lösung: Adjustierung für Alter mittels multivariater Analyse

Simpson's Paradoxon Reserpin-Beispiel

Brustkrebs

ja nein

ja 32 57 32/89 = 36 %

Reserpin 149 351 149 / 500 = 30 %

Alter ≤ 50

Brustkrebs

Reserpin

ja nein

ja	nein
2	14
42	221

$$OR = 0.14 / 0.19 = 0.75$$

Alter > 50

Brustkrebs

Reserpin

ja nein

ja	nein
30	43
107	130

$$OR = 0.70 / 0.82 = 0.85$$

Logistische Regressionsanalyse

- Untersuchung / Modellierung von prognostischen Faktoren für binäre Outcomes bei gleichzeitiger Adjustierung für Störfaktoren ("confounders")
- Multivariate Erweiterung zur Kontingenztafelanalyse und Chi-Quadrat Test
- Berechnet wird das adjustierte Odds Ratio
- Cytisine for smoking cessation: Adjustment for all baseline characteristics shown in Table 1 had a negligible effect.

Logistische Regressionsanalyse

Modell mit Reserpin:

	В	S.E.	Wald	df	Sig.	Exp(B)	95% C.I	. for EXP(B)
							Lower	Upper
reserpin	,280	,242	1,339	1	,247	1,323	,824	2,123

Modell mit Reserpin und Alter:

	В	S.E.	Wald	df	Sig.	Exp(B)	95% C.I.	for EXP(B)
							Lower	Upper
reserpin	-,179	,255	,491	1	,483	,836	,507	1,379
alter50	1,474	,205	51,497	1	,000	4,367	2,920	6,532

Logistische Regression

Untersuchungsziel: hat eine/mehrere (unabhängige) Variable/n X einen Einfluss auf eine andere (abhängige) Variable Y?

- ▲ Abhängige Variable ist binär (Ausprägungen z B. ja/nein)
- ▲ Unabhängige Variablen sind intervallskaliert oder als Dummy-Variablen codiert
- ▲ Unterschied zur linearen Regression: Y kann nur die Werte 0 oder 1 annehmen
- ▲ Hintergrund der logistischen Regression: Untersuchung des Zusammenhang p=P(Y=1) und der unabhängigen Variable(n) X
- Les wird nicht der Wert der abhängigen Variablen vorhergesagt, sondern die Wahrscheinlichkeit, dass die abhängige Variable den Wert 1 annimmt

Cave: erwarteter kausaler Zusammenhang zwischen unabhängiger und abhängiger Variable muss theoretisch erklärbar sein

Logistische Regression – statistischer Hintergrund

- Logistische Regressionsanalyse basiert auf der Maximum-Likelihood-Schätzung (MLE) und unterscheidet sich von der Methode der kleinsten Quadrate (lineare Regressionsanalyse)
- Ziel der Analyse: Identifikation einer Funktionskurve zu finden, die möglichst gut zu den Daten passt
- ▲ Funktion ist eine logistische Funktion (bei linearen Regressionsanalyse eine Gerade)
- ▲ Werte der logistischen Funktion werden als Wahrscheinlichkeit interpretiert (dass die abhängige Variable y den Wert 1 annimmt –gegeben die unabhängigen Variablen x_k)
- ▲ Wert nahe bei 0 bedeutet, dass das Eintreten von y (y = 1) sehr unwahrscheinlich ist; Wert nahe bei 1, dass das Eintreten von y sehr wahr

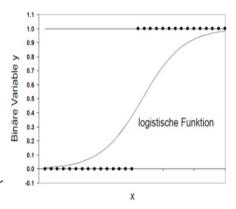


Abbildung 2: Logistische Funktion

Logistische Regression – statistischer Hintergrund

▲Logistische Regressionsfunktion:

$$P(y=1) = \frac{1}{1+e^{-z}}$$

$$P(y=1) = Wahrscheinlichkeit, dass y = 1$$

e = Basis des natürlichen Logarithmus,Eulersche Zahl

z = Logit (lineares Regressionsmodell der unabhängigen Variablen)

z, der sogenannte "Logit", stellt dabei ein lineares Regressionsmodell dar:

$$z = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3 + \dots + \beta_k \cdot x_k + \varepsilon$$

$$= \text{unabhängige}$$

X_k = unabhängige Variablen

 β_k = Regressionskoef fizienten

 $\mathcal{E} = \text{Fehlerwert}$

$$P(y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3 + \dots + \beta_k \cdot x_k + \varepsilon)}}$$

Logistische Regression - Interpretation

- Zusammenhang zwischen unabhängigen Variablen und abhängiger Variable wird mittels sogenannter "Odds" interpretiert
- Odds: Wahrscheinlichkeit, dass das Ereignis eintrifft, in Relation zum Nichteintreffen des Ereignisses

$$Odds = \frac{P(y \text{ trifft ein})}{P(y \text{ trifft nicht ein})} = \frac{P(y \text{ trifft ein})}{1 - P(y \text{ trifft ein})}$$

Odds Ratio =
$$Exp(B) = e^{\beta} = \frac{Odds \text{ nach dem Anstieg von x um eine Einheit}}{Odds \text{ vor dem Anstieg von x um eine Einheit}}$$
$$= \frac{Odds_{\text{nach}}}{Odds_{\text{vor}}}$$

Logistische Regression - Interpretation

- △ Odds Ratio einer unabhängigen Variablen = Veränderung der relativen Wahrscheinlichkeit von y = 1 an, wenn diese unabhängige Variable um eine Einheit steigt
- ▲ Odds Ratio einer unabhängigen Variablen ist der Faktor, um den sich die Odds verändern, wenn diese Variable um eine Einheit ansteigt
- **Lesson** Beträgt eine Odds Ratio (Exp(B)) = 1 ergibt sich keine Veränderung (Odds_{nach} = Odds_{vor})
- Odds Ratio > 1 ergibt eine Zunahme der Odds (Odds_{nach} > Odds_{vor})
- ▲ Odds Ratio <1 ergibt eine Abnahme der Odds (Odds_{nach} <Odds_{vor})
- **▲** Zusammenhang Odds Ratios und Regressionskoeffizienten: Odds Ratio =Exp(B) =e $^{\beta}$
- ▲ Odds Ratio = 1 wenn Regressionskoeffizient = 0, > 1 wenn Regressionskoeffizient positiv ist, < 1 wenn Regressionskoeffizient negativ ist</p>

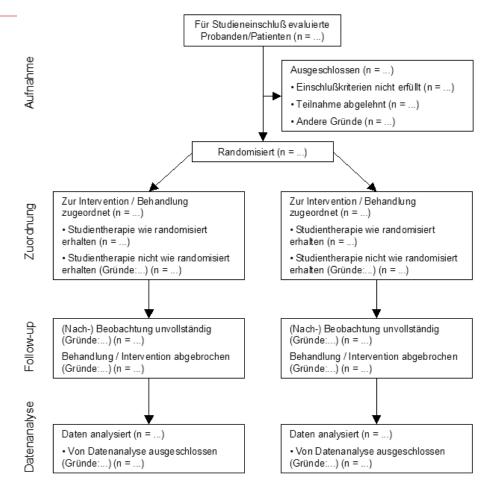
Logistische Regression – statistische Signifikanz

- ▲ 1. Schritt: Überprüfen ob das Regressionsmodell insgesamt signifikant ist: Chi-Quadrat-Test
- Prüft ob das Modell insgesamt einen Erklärungsbeitrag leistet
- Modellgüte: Passung zwischen Modell und Daten ("Goodness of fit"): Analog zum R-Quadrat der linearen Regression verschiedene Pseudo-R-Quadrate
- 2. Schritt: Überprüfen ob Regressionskoeffizienten (Betas) ebenfalls signifikant sind Wald-Test für jeden der Regressionskoeffizienten

Variablen in der Gleichung

		Regressions						95% Konfidenzi (E	
		koeffizientB	Standardfehler	Wald	df	Sig.	Exp(B)	Unterer Wert	Oberer Wert
Schritt 1 a	Einkommen	022	.006	14.651	1	.000	.979	.968	.990
	Risikobereitschaft	.348	.088	15.541	1	.000	1.416	1.191	1.683
	Interesse	.085	.018	23.036	1	.000	1.089	1.052	1.127
	Konstante	-1.668	.279	35.731	1	.000	.189		

- a. In Schritt 1 eingegebene Variablen: Einkommen, Risikobereitschaft, Interesse.
- **▲** Exp(B) =entlogarithmierter logit-Koeffizienten wenn Konfidenzintervall von Exp(B) den Wert 1 nicht einschließt: signifikanter Einfluss
- ♣ Risikobereitschaft Exp(B) >1 positiver Zusammenhang: steigt Risikobereitschaft um eine Einheit steigt die relative Wahrscheinlichkeit, dass eine Person bereits einmal Aktien gekauft hat, um 41.6% (1.416 1 = .416)

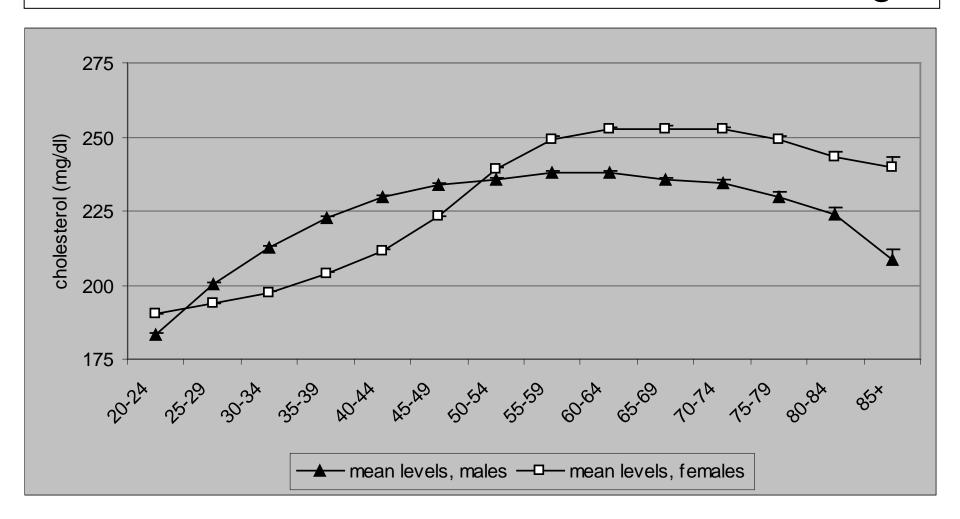

Vergleichbarkeit: Patientenflussdiagramm

MEDIZINISCHE UNIVERSITÄT

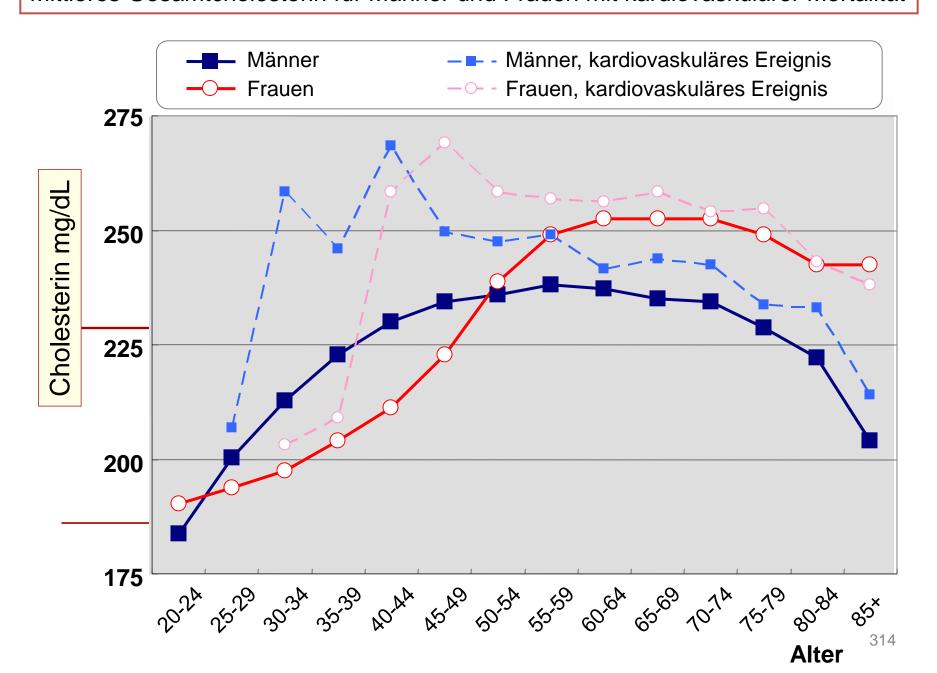
Intention-To-Treat

versus

- Per-Protocol
- Vergleichbarkeit der Gruppen:
 - Strukturgleichheit
 - Beobachtungsgleichheit
 - Behandlungsgleichheit



Effektmodifikation (Interaktion)

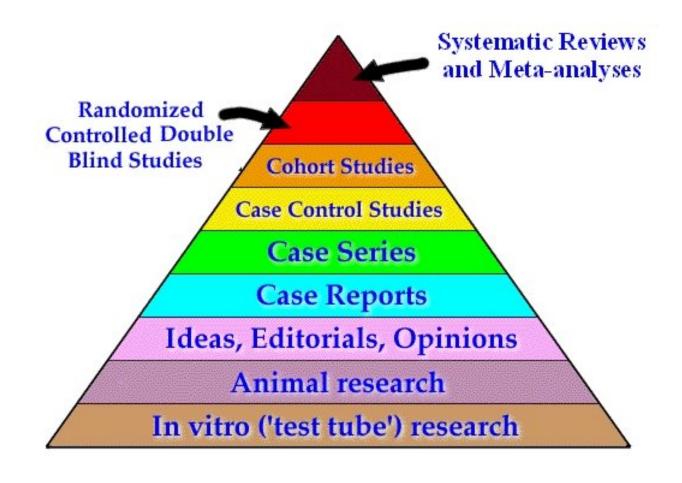


- Existieren in verschiedenen Strata (Schichten) einer Variablen unterschiedliche Effektschätzer,
- so spricht man von Effektmodifikation bzw. Interaktion.
- Die Schichtvariable wird als Effektmodifikator (effect modifier) bezeichnet
- Reine Effektmodifikation führt nicht zu einer Verzerrung des Effektmaßes und gehört damit nicht zu den Fehlern in epidemiologischen Studien
- Modellierung durch Aufnahme von multiplikativen Termen in Regressionsmodellen

Mittleres Gesamtcholesterin für Männer und Frauen nach Alter bei der Erstuntersuchung

Mittleres Gesamtcholesterin für Männer und Frauen mit kardiovaskulärer Mortalität

Studiendesign und Ethikeinreichung


Dr. Hanno Ulmer

hanno.ulmer@imed.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Hierarchie von Medizinischen Studien

RCT: Randomisierte kontrollierte Studie

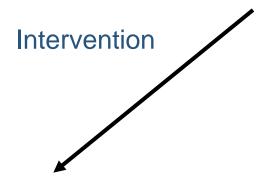
Klinische Studien sind ein Experiment

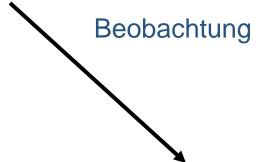
- Einflussfaktor wird gesteuert
- Alle anderen Faktoren sollen möglichst konstant gehalten werden

Randomisierung

- Zufällige Behandlungszuteilung
- Ausschluss von Verzerrungen (Bias) durch Selektion

Verblindung


Ausschluss von Verzerrungen (Bias) durch Information


Experiment vs. Erhebung

Zu untersuchender Faktor

(z.B. Wirksamkeit einer Therapie oder eines Medikaments, schädlicher Einfluss von Rauchen oder Übergewicht, Schützender Einfluss von Obst/Gemüse, Sport...)

Der Faktor wird gezielt eingesetzt und vorgegeben. Wirksamkeit (und Verträglichkeit) in Hinblick auf die Zielerkrankung werden geprüft.

Der Faktor wird beobachtet und Zusammenhänge mit bzw. sein Einfluss auf das Auftreten von Krankheit geprüft.

Kohortenstudie

Kohortenstudie 1

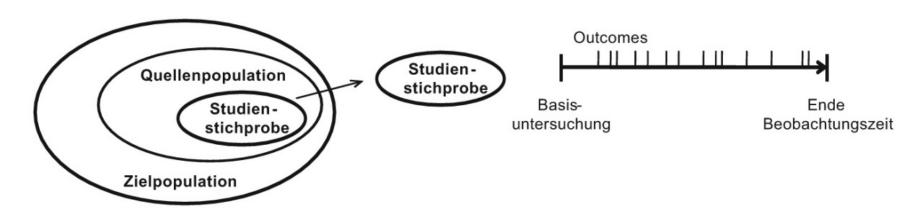


Abbildung 14.2: Grundstruktur einer Kohortenstudie.

Kohortenstudie

Kohortenstudie 2

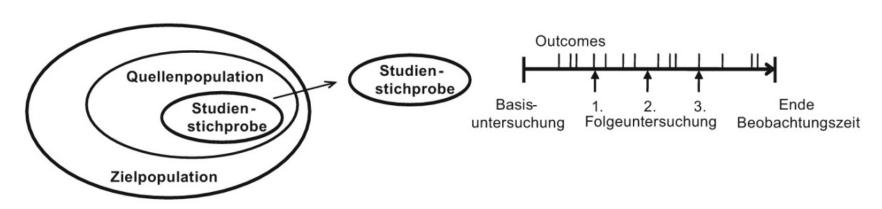
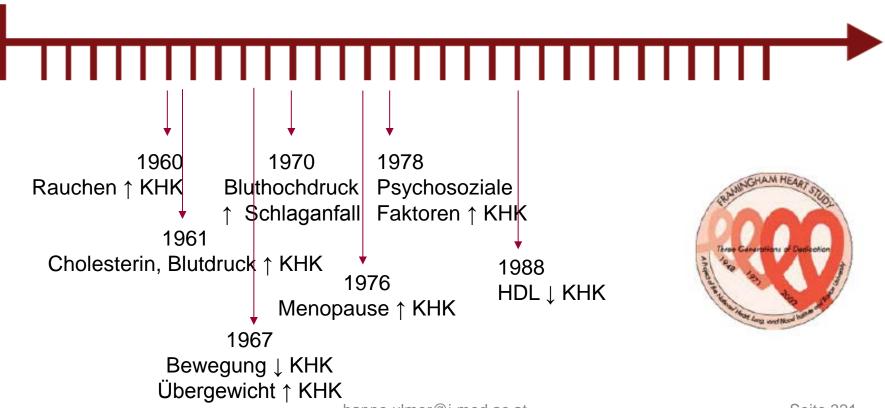



Abbildung 14.3: Eine Kohortenstudie mit wiederholten Untersuchungen.

Kohorten Studie: Framingham Heart Study

1948 Rekrutierung von 5209 gesunden Probanden (30-62J)

Fall-Kontroll Studie

Fall Kontroll Studie

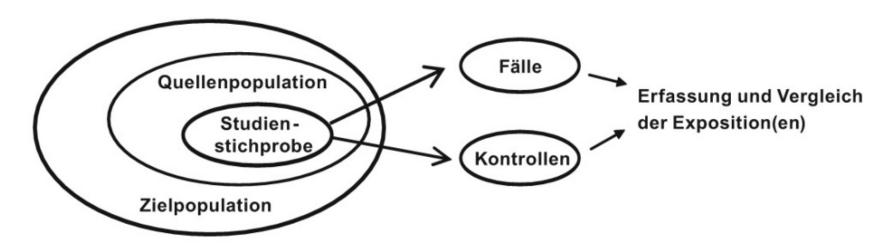
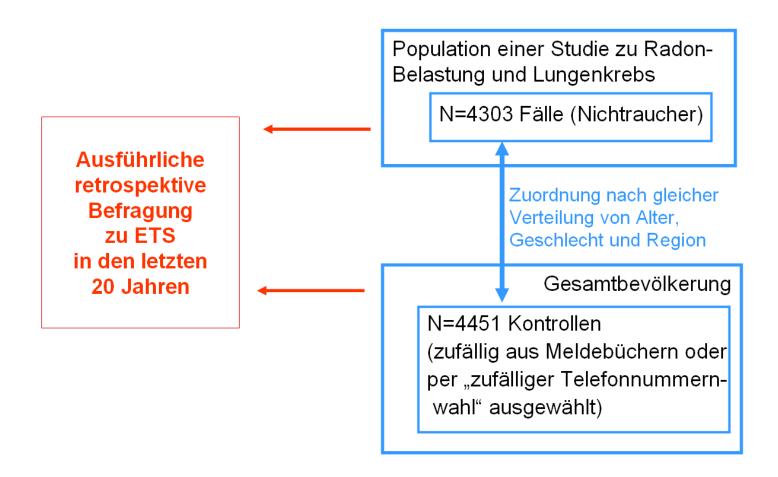
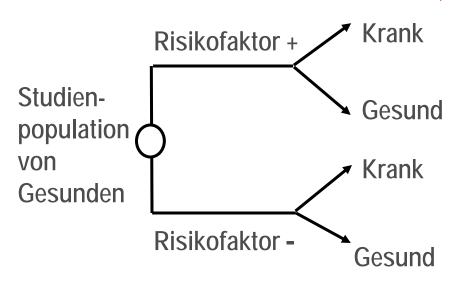



Abbildung 14.4: Grundstruktur einer Fall-Kontrollstudie.

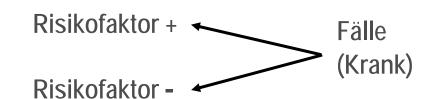
Fall-Kontroll Studie:

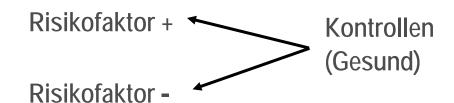
Passivrauchen (ETS) und Lungenkrebs



Kreuzer, Krauss, Kreienbrock, Jöckel, Wichmann in AJE, 1999

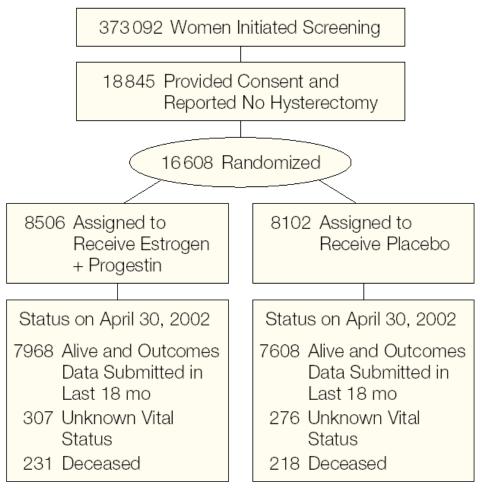
Kohortenstudie


prospektiv



	Kranke	Gesunde	
Risikofaktor +	A	В	A + B
Risikofaktor =	С	D	C + D

Fall-Kontroll-Studie retrospektiv



	Kranke	Gesunde	
Risikofaktor +	Α	В	A + B
Risikofaktor =	С	D	C + D

Interventionsstudie: Women's Health Initiative

Meta-Analyse

Dr. Hanno Ulmer

hanno.ulmer@i-med.ac.at

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Gliederung

- Allgemeiner Teil
- Praktische Meta-Analyse mit MedCalc
- Übung Lionheart-Levorep

Literaturhinweise, Quellen

- Marcus Müllner Erfolgreich wissenschaftlich arbeiten in der Klinik; Evidence Based Medicine-Springer Wien 2005, S.125 ff.
- George Davey Smith, Matthias Egger Meta-Analysen, pharma-kritik Jahrgang 14, Nummer 14, 1992
- Hansueli Stamm, Thomas M. Schwarb: Meta-analyse- Eine Einführung; ZfP 1995
- A. Ziegler, S. Lange, R. Bender; Systematische Übersichten und Meta-Analysen, Deutsche Medizinische Wochenschrift, 129. Ausgabe, 2004.
- Leo Held, Burkhart Seifert, Kaspar Rufibach Medizinische Statistik, Pearson 2013.
- https://training.cochrane.org/interactivelearning

Definition und Idee

- Die Meta-Analyse ist die quantitative Kombination der Resultate mehrerer Einzelstudien
- Idee ca. 100 Jahre alt, erste Analyse 1955 (Becher et al JAMA 1955)
- Begriff erstmals 1979 durch Psychologen Gene V. Glass verwendet
- Mit der Entwicklung von geeigneteren statistischen Methoden haben Meta-Analysen seit dem Anfang der achtziger Jahre zunehmend an Bedeutung gewonnen. Der meta-analytische Ansatz blieb jedoch von heftiger Kritik nicht verschont. Während die einen die Meta-Analyse als «objektive, quantitative Methode» rühmen, wird das Verfahren von anderen als «statistischer Trick» bezeichnet, der «ungerechtfertigte Annahmen macht und zu unzulässigen Verallgemeinerungen führt».

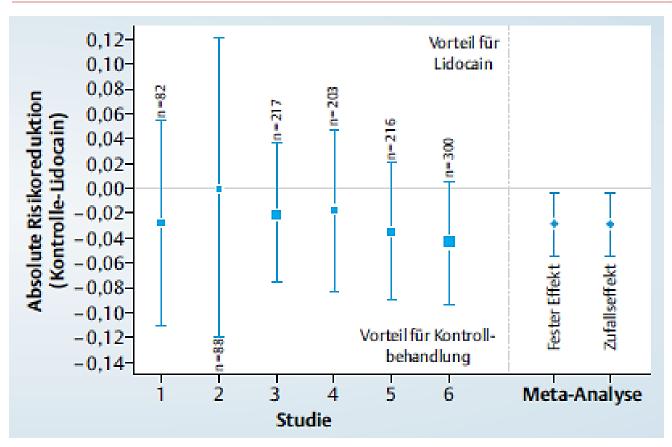
Ziel

- Einzelergebnisse inhaltlich homogener Primärstudien werden zusammengefasst und empirisch ausgewertet.
- Ziel ist eine Effektgrößenschätzung. Es soll untersucht werden, ob ein Effekt vorliegt und wie groß dieser ist.
- Effektgrößen können sein: Mittelwerte, Differenzen, relative oder absolute Risiken, Odds Ratio, etc.
- Mit Hilfe der Meta-Analyse lassen sich mehrere geeignete Einzelstudien statistisch zusammenfassen, diese können dabei verschieden gewichtet werden.
- Gewinn neuer Erkenntnisse aus alten Daten

Zweck

- Voraussetzung, es wurden zwei oder mehr Studien mit ähnlicher Fragestellung durchgeführt und/oder publiziert
- Stichprobenumfang der Einzelstudien zu klein
- Vorhandene Studien liefern inkonsistente Ergebnisse
- Untersuchung von Einflüssen und ihre Stärke auf das Ergebnis
- Grundlage für künftige Forschungstätigkeit
- Ermittlung des Publikationsbias

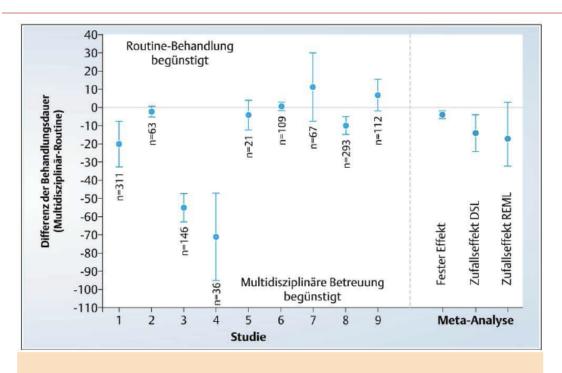
Beispiel



Tab. 1 Untersuchung der Mortalität durch Prophylaxe mit Lidocain im akuten Myokardinfarkt (Quelle: Referenz [18], siehe auch [20]).

	Quelle	Anzahl randomisierter Patienten		Anzahl verstorbener Patienten		
		Lidocain	Kontrolle	Lidocain	Kontrolle	
1	Chopra et al.	39	43	2	1	
2	Mogensen	44	44	4	4	
3	Pitt et al.	107	110	6	4	
4	Darby et al.	103	100	7	5	
5	Bennett et al.	110	106	7	3	
6	O'Brian et al.	154	146	11	4	
Gesamt		557	549	37	21	

Beispiel



Wirksamkeit von Lidocain zur Reduktion von Mortalität im akuten Myokardinfarkt [A. Ziegler, S. Lange, R. Bender; Systematische Übersichten und Meta-Analysen .]

Beispiel, Heterogenität

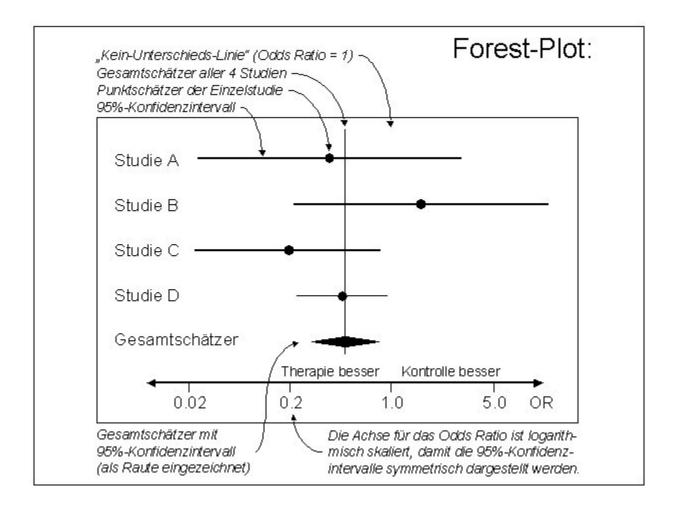
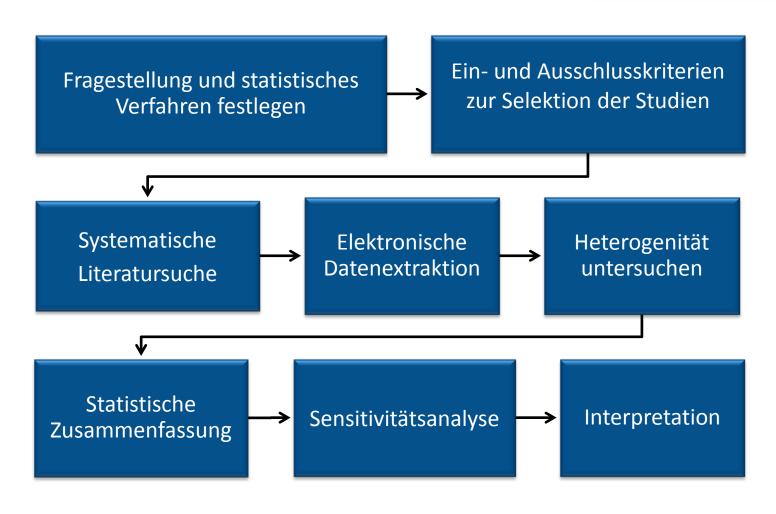


Abb. 2 Betreuung von Schlaganfallpatienten durch Team von Spezialisten mehrerer Disziplinen im Vergleich zum Routinemanagement: x-Achse stellt die einzelnen Studien sowie die Meta-Analysen dar; y-Achse Dauer des Krankenhausaufenthalts in Tagen (LOS). Für jede einzelne Studie und die Meta-Analysen sind die geschätzte LOS (Punkt) mit dem dazugehörigen 95% Konfidenzintervall (Schnurrbärte) dargestellt.

Meta-Analyse


Stufen einer Meta-Analyse

- Definition der Hypothese
 - Definition der abhängigen und unabhängigen Variablen
 - Standardisierung der Terminologie
- Definition der Keywords für Literatursuche und Datensammlung
 - MeSH
- Definition von Ein- und Ausschlusskriterien für Studien
- Analyse und Validierung der Ergebnisse
 - Mit geeigneter Software

Ablauf der Meta-Analyse

Meta-Analyis Protocol (FDA guidance)

- The planned purpose of the meta-analysis
- The background information available at the time of protocol development that motivated the meta-analysis
- The design features of the meta-analysis, including outcome definition and ascertainment, exposure periods and assessment, comparator drugs, and target subject population
- A description of the search strategy that will be used to identify candidate trials and the criteria that will be applied for trial selection
- The analysis strategy for conducting the meta-analysis, including planned subgroup analyses and sensitivity analyses

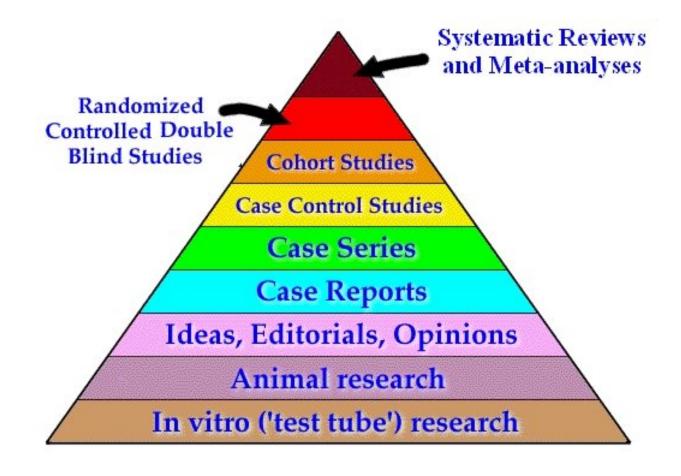
Methods: Search strategy

Search strategy

Key terms:

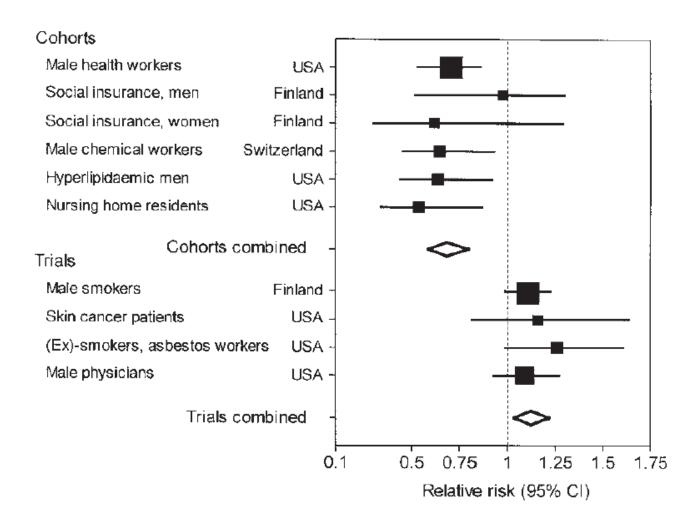
"physical activity", "exercise", "increase", "brief intervention", "counselling", "systematic review", "meta analysis".

Period covered: 1854 - October 2011.


Databases

- CINAHL
- Cochrane Database of Systematic Reviews
- Database of Abstracts of Reviews of Effects (DARE) on Cochrane Library and Centre for Reviews and Dissemination (CRD)
- Health Technology Assessment database on Cochrane Library and Centre for Reviews and Dissemination (CRD)
- Embase
- MEDLINE
- PsycINFO
- SCI-Expanded
- SSCI SIGN
- Hand search of first authors'(LL) personal collections of articles

Hierarchie von Medizinischen Studien



Konsistenz

Beta-Carotin und kardiovaskuläre Mortalität

Davey Smith & Ebrahim, Int J Epidemiol 2001

Evidenzgrade von Studien

Stufe	Für Therapie, Prävention, Ätiologie, Nebenwirkungen
1a	Systematisches Review mit homogenen RCTs
1b	Einzelne RCT (mit engen Konfidenzintervallen)
1c	Sonderfälle
2a	Systematisches Review mit homogenen Kohortenstudien
2b	Einzelne Kohortenstudie oder methodisch schwache RCT (z.B. <80% Nachbeobachtung)
2c	"Outcome"-Forschung, Ökologische Studien
3a	SR mit homogenen Fall-Kontroll-Studien
3b	Einzelne Fall-Kontroll-Studie
4	Fallserien (+ qualitativ schlechte Kohorten- u. Fall-Kontroll-Studien)
5	Expertenmeinung ohne explizite Bewertung der Evidenz oder basierend auf physiologischen Grundlagenmodellen

Fragen zur Meta-Analyse

• Ist die Qualität der berücksichtigten Studien zufriedenstellend?

Zwischen verschiedenen Studien bestehen zum Teil erhebliche Qualitätsunterschiede, die in einer Meta-Analyse zunächst nicht berücksichtigt werden. Als Mindestanforderung gilt, dass nur korrekt *randomisierte Studien* mit vollständigen Angaben über alle am Anfang in die Studie aufgenommenen Personen meta-analysiert werden. Der Randomisierungsvorgang, der leider oft ungenügend beschrieben ist, verdient deshalb besondere Aufmerksamkeit.

Daneben ist es auch von Bedeutung, dass in den verschiedenen Studien tatsächlich gleiche oder vergleichbare Therapien und Beurteilungsverfahren eingesetzt wurden. Bei vielen Medikamentenstudien muss z.B. gefordert werden, dass die Bewertung der Therapieergebnisse *blind* erfolgt.

Wurden alle relevanten Studien berücksichtigt?

Da «positive» Resultate mit grösserer Wahrscheinlichkeit veröffentlicht werden als Studien, die keinen Effekt zeigen, sollten auch unpublizierte Studien berücksichtigt werden. Dies gilt natürlich nur, soweit die erwähnten Qualitätskriterien erfüllt sind. Wenn allenfalls in Frage kommende Studien nicht in eine Meta-Analyse aufgenommen werden, so sollten sie erwähnt und die entsprechende Entscheidung begründet werden.

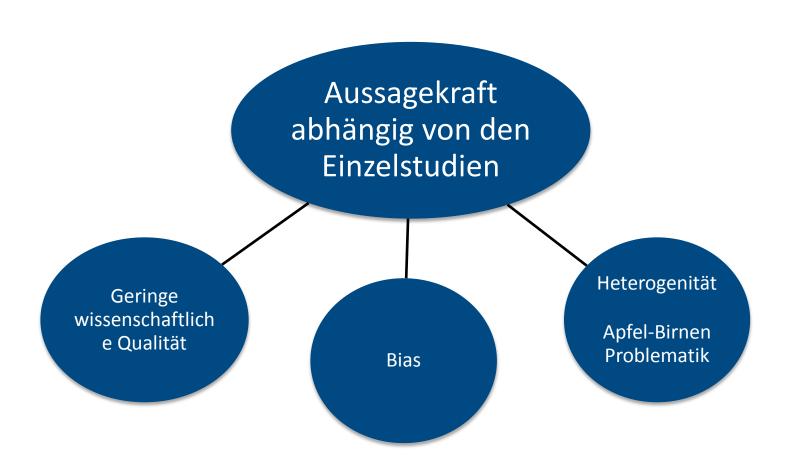
Fragen zur Meta-Analyse

 Haben die berücksichtigten Studien teilweise entgegengesetzte Resultate erbracht?

Der Variabilität der Ergebnisse wird oft nicht genügend Beachtung geschenkt. Das Problem der Heterogenität von Studienresultaten kann nicht durch die Anwendung eines statistischen Tests gelöst werden. Wenn stark voneinander abweichende Resultate vorliegen, geben klinische und biologische Überlegungen den Ausschlag, ob überhaupt eine Meta-Analyse sinnvoll ist.

Wie «robust» sind die Ergebnisse der Meta-Analyse?

Bei der Durchführung einer Meta-Analyse gibt es eine Reihe von teilweise *arbiträren* Entscheiden (Ausschluss von Studien, Wahl der statistischen Methoden, Interpretation bestimmter Resultate). Das Resultat einer Meta- Analyse sollte von solchen Entscheiden einigermaßen unabhängig sein. Wenn also die gleiche Meta-Analyse z.B. mit einer etwas anderen Studienauswahl oder mit einem anderen statistischen Verfahren durchgeführt wird, sollte sie ungefähr dasselbe Resultat ergeben.


Stärken

- Mathematische-statistische Zusammenfassung von Einzelstudien
- Im Gegensatz dazu steht der narrative Review
- Meta-Analyse objektiver durch ihre Festlegung von Kriterien für die Auswahl von Primärstudien (gegebenenfalls sinkt aber die Studienanzahl)
- Relativ kostengünstig
- Erhöhung der Validität und Trennschärfe
- Ermittlung welche Eigenschaften zu welchen Effektstärken führen

Schwächen

	Impfung	Kontrolle		Odd	Ratio					
Studie	Grippefälle Total G	rippefälle Total					OR	95% KI	W_{i}	w_{i}^{*}
				1						
Mogabgab (1970)	2 881	16 521					0,072	[0,016; 0,314]	3,5%	9,8%
Hammond (1978)	1 116	14 109					0,059	[0,008; 0,457]	1,8%	5,8%
Tannock (1984)	1 37	1 20		1	-		0,528	[0,031; 8,916]	0,9%	3,3%
Keitel (1988)	17 456	17 241		1	-		0,510	[0,256; 1,019]	15,8%	23,6%
Powers (1995)	0 26	1 8			-		0,094	[0,003; 2,562]	0,7%	2,4%
Keitel (1997)	4 723	5 217		- 1	-		0,236	[0,063; 0,886]	4,3%	11,5%
Bridges (2000)	2 141	14 137	_				0,126	[0,028; 0,567]	3,3%	9,5%
Beran (2009)	65 5103	82 2549		1			0,388	[0,279; 0,539]	69,7%	34,1%
				1						
Modell feste Effekte	7483	3802		_			0,346	[0,263; 0,455]	100%	
Modell zufällige Effekte	1			- 1			0,261	[0,153; 0,444]		100%
								-		
				1						
			0,01	0,1	1 10	100				

Abbildung 15.1: Forest-Plot der Meta-Analyse zur Grippeimpfung.

	Grippenerkrankung			
Geimpft	Ja	Nein		
Ja	0 (0,5)	26 (26,5)		
Nein	1 (1,5)	7 (7,5)		

Publications Bias

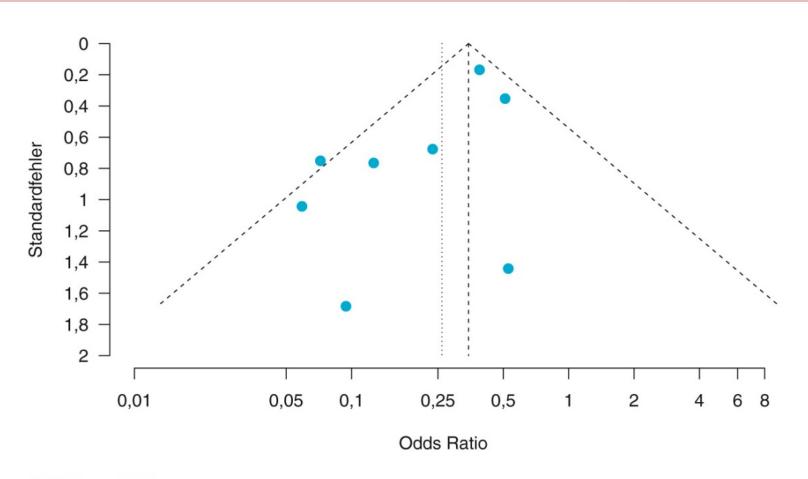


Abbildung 15.3: Funnel-Plot zur Beurteilung von Publikations-Bias.

Stratifying the analysis by trial

- An important principle involved in estimating risk from a meta-analysis is that the randomized comparisons of the individual trials should be maintained when analyzing the combined data.
- In other words, when comparing drug A to drug B, subjects randomly assigned to drug A in a single trial are compared to subjects assigned to drug B from the same trial and not to subjects from other trials. In the statistics literature, this is referred to as stratifying the analysis by trial.

Simpson's Paradoxon

Table 1. An Illustration of Simpson's Paradox from Incorrect Pooling of Data

	Drug A				Drug B		
Trial	Events	Patients	Risk	Events	Patients	Risk	
1	1	100	1.0%	2	200	1.0%	
2	1	100	1.0%	2	200	1.0%	
3	200	1200	16.7%	50	300	16.7%	
4	2	200	1.0%	2	200	1.0%	
Total	204	1600	12.8%	56	900	6.2%	

The hypothetical example in Table 1 illustrates an extreme example of Simpson's paradox in which, for each of four trials, the estimated risk of a safety event is identical for both Drug A and Drug B. With simple pooling, however, the risk for Drug A appears to be more than twice as high as that for Drug B (12.8 percent vs. 6.2 percent)

Mantel-Haenszel Methode – stratifizierte Analyse

	Erfolgrei		
	Ja	Total	
Therapie A	273 (78 %)	77	350
Therapie B	289 (83 %)	350	

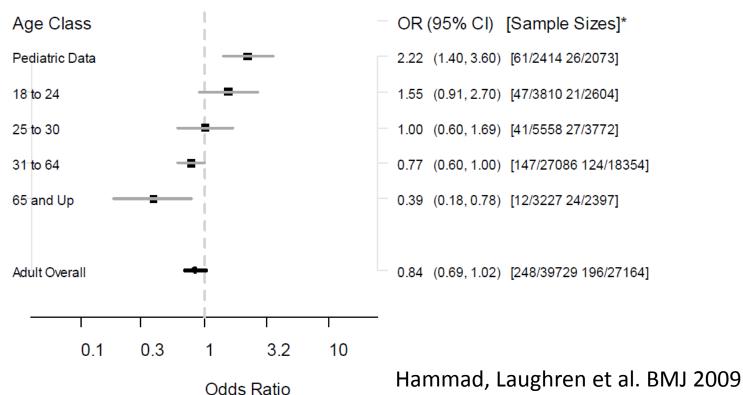
Tabelle 7.3: Analyse des Erfolgs zweier Therapien zur Nierensteinentfernung.

	Kleine Nierensteine			Große Nierensteine			
	Erfolgr	eich		Erfolgr			
	Ja	Nein	Total	Ja	Nein	Total	
Therapie A	81 (93 %)	6	87	192 (73 %)	71	263	
Therapie B	234 (87 %)	36	270	55 (69 %)	25	80	

Tabelle 7.4: Subgruppenanalyse des Erfolgs zweier Therapien zur Nierensteinentfernung in Abhängigkeit von der Nierensteingröße.

$$Odds \ Ratio_{Mantel_Haenszel} = \frac{\frac{81x36}{357} + \frac{192x25}{343}}{\frac{6x234}{357} + \frac{71x55}{343}} = 1,45 \text{ (p=0,12)}$$

Sensitivity Analysis



- The goal of any sensitivity analysis should not be to search for additional findings, but to support and 634 understand the primary findings of the meta-analysis.
- For example, a meta-analysis that included one very large study contributing a large proportion of subjects and events could raise a concern that it was overly influencing the metaanalytic results. A sensitivity analysis that excluded that study would have reduced numbers of subjects and events and lower power to yield a significant finding, but a risk estimate that was consistent with the original estimate would add to the weight of evidence of the finding

FDA Meta-Analysis of Antidepressants and Suicidal Behaviour

Suicidal Behavior and Ideation Psychiatric Indications

Cochrane

Das Cochrane-Logo spiegelt die Ergebnisse eines Systematischen Cochrane Reviews mit Kultcharakter wider. In dem Review von 1989 ging es um die Frage, ob die Reifung der Lungen bei Frühgeborenen durch die Gabe von Kortikosteroiden unterstützt werden kann. Der Cartoonist David Mostyn kreierte aus den Studienergebnissen ein prägnantes Logo.

MedCalc statistical software: Meta-analysis Introduction

- A meta-analysis integrates the quantitative findings from separate but similar studies and provides a numerical estimate of the overall effect of interest (Petrie et al., 2003).
- Different weights are assigned to the different studies for calculating the summary or pooled effect. The weighting is related with the inverse of the standard error (and therefore indirectly to the sample size) reported in the studies. Studies with smaller standard error and larger sample size are given more weight in the calculation of the pooled effect size.

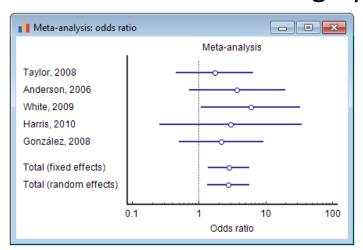
The effect of interest can be

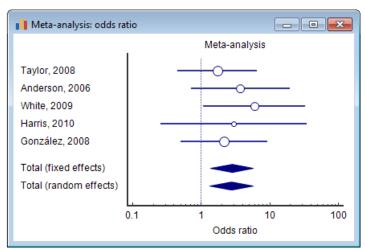
- The effect of interest can be:
- an average of a continuous variable
- a correlation between two variables
- an odds ratio, suitable for analyzing retrospective studies
- a relative risk (risk ratio) or risk difference, suitable for analyzing prospective studies
- a proportion
- the area under the ROC curve

Fixed and random effects model

- Under the fixed effects model, it is assumed that the studies share a common true effect, and the summary effect is an estimate of the common effect size.
- Under the random effects model the true effects in the studies are assumed to vary between studies and the summary effect is the weighted average of the effects reported in the different studies (Borenstein et al., 2009).
- The random effects model will tend to give a more conservative estimate (i.e. with wider confidence interval), but the results from the two models usually agree when there is no heterogeneity.
- When heterogeneity is present (see below) the random effects model should be the preferred model.

Heterogeneity



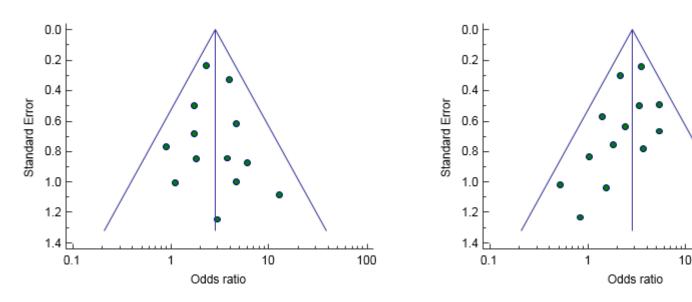

- Cochran's Q is the weighted sum of squares on a standardized scale. It is reported with a P value with low P-values indicating presence of heterogeneity. This test however is known to have low power to detect heterogeneity and it is suggested to use a value of 0.10 as a cut-off for significance (Higgins et al., 2003). Conversely, Q has too much power as a test of heterogeneity if the number of studies is large.
- I² statistics is the percentage of observed total variation across studies that is due to real heterogeneity rather than chance. It is calculated as I² = 100% x (Q df)/Q, where Q is Cochran's heterogeneity statistic and df the degrees of freedom. Negative values of I² are put equal to zero so that I²lies between 0% and 100%. A value of 0% indicates no observed heterogeneity, and larger values show increasing heterogeneity (Higgins et al., 2003).

Forest plot

The results of the different studies, with 95% CI, and the overall effect (under the fixed and random effects model) with 95% CI are illustrated in a graph called "forest plot", e.g.:

In this example the markers representing the effect size all have the same size. Optionally, the marker size may vary in size according to the weights assigned to the different studies. In addition, the pooled effects can be represented using a diamond. The location of the diamond represents the estimated effect size and the width of the diamond reflects the precision of the estimate.

Funnel plot



- A funnel plot (Egger et al., 1997) is a graphical tool for detecting bias in meta-analysis.
- In a funnel plot treatment effect is plotted on the horizontal axis and MedCalc plots the standard error on the vertical axis (Sterne & Egger, 2001).
- The vertical line represents the summary estimated derived using fixed-effect meta-analysis.
- Two diagonal lines represent (pseudo) 95% confidence limits (effect ± 1.96 SE) around the summary effect for each standard error on the vertical axis. These show the expected distribution of studies in the absence of heterogeneity or of selection bias. In the absence of heterogeneity, 95% of the studies should lie within the funnel defined by these diagonal lines.

Funnel plot

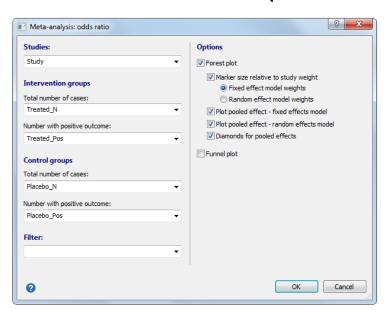
100

Publication bias results in asymmetry of the funnel plot. If publication bias is present, the smaller studies will show the larger effects. See Sterne et al. (2011) for interpreting funnel plot asymmetry. The funnel plot may not always be a reliable tool, in particular when the number of studies included in the analysis is small.

References

- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Chichester, UK: Wiley.
- Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557-560.
- Petrie A, Bulman JS, Osborn JF (2003) Further statistics in dentistry. Part 8: systematic reviews and meta-analyses. British Dental Journal 194:73-78.
- Sterne JA, Egger E (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. Journal of Clinical Epidemiology 54:1046–1055.
- Sterne JA, Sutton AJ, Ioannidis JP et al. (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343:d4002.
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled Clinical Trials 7:177-188
- Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from the retrospective analysis of disease. Journal of the National Cancer Institute 22: 719-748.
- Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. London: Academic Press.
- Zhou XH, NA Obuchowski, DK McClish (2002) Statistical methods in diagnostic medicine. New York: Wiley.

Meta-analysis in MedCalc

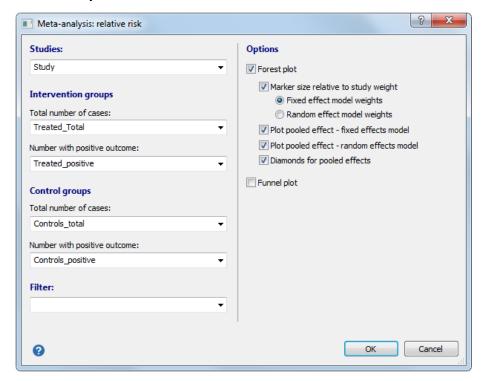


- Continuous measure
- Correlation
- Proportion
- Relative risk
- Risk difference
- Odds ratio
- Area under ROC curve
- Generic inverse variance method

Meta-analysis: odds ratio

MedCalc uses the Mantel-Haenszel method (Mantel & Haenszel, 1959) for calculating the weighted pooled odds ratio under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary odds ratio under the random effects model (DerSimonian & Laird, 1986).

Meta-analysis: odds ratio

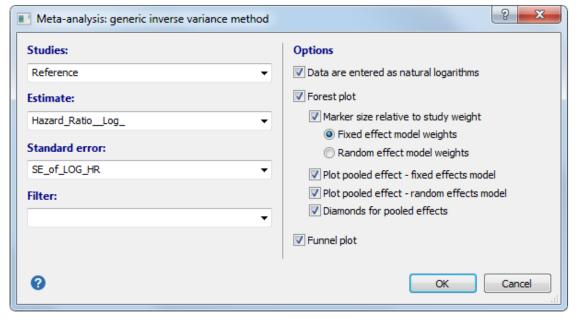


Α	Study					
	Α	В	С	D	E	*
	Study	Treated_N	Treated_Pos	Placebo_N	Placebo_Pos	
1	Taylor, 2008	73	15	23	3	
2	Anderson, 2006	35	7	32	2	
3	White, 2009	20	8	20	2	
4	Harris, 2010	12	3	10	1	
5	González, 2008	42	6	42	3	
6						-

Meta-analysis: relative risk and risk difference

MedCalc uses the Mantel-Haenszel method (based on Mantel & Haenszel, 1959) for calculating the weighted pooled relative risk and risk difference under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary relative risk under the random effects model (DerSimonian & Laird, 1986).

	Study					
	Α	В	С	D	E	
	Study	Treated_positive	Treated_Total	Controls_positive	Controls_total	
1	佐藤, 2012	95	103	47	104	
2	渡辺, 2008	119	127	34	129	
3	山本, 2013	51	223	12	76	
4	長谷川, 2006	122	139	61	142	
5	田村, 2006	47	53	10	51	
6	小野, 2004	121	135	29	68	
7	菊地, 2008	337	378	170	376	
8						


Meta-analysis: hazard ratio (generic inverse variance method)

Estimates and their standard errors are entered directly. For ratio measures of intervention effect, the data should be entered as natural logarithms (for example as a log Hazard ratio and the standard error of the log Hazard ratio).

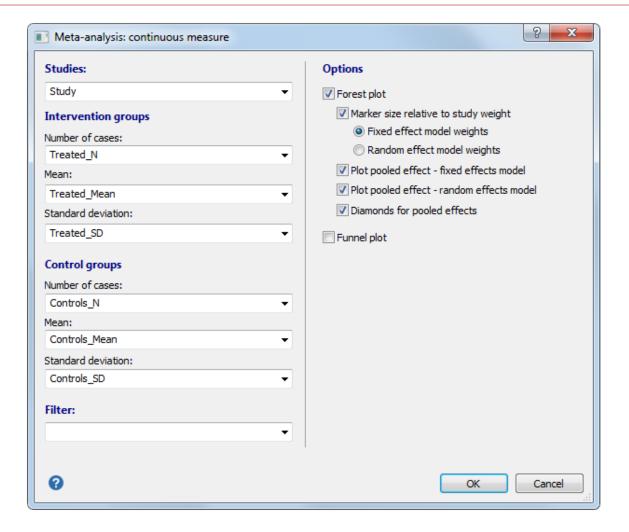
In the inverse variance method the weight given to each study is the inverse of the variance of the effect estimate (i.e. one over the square of its standard error). Thus larger studies are given more weight than smaller studies, which have larger standard

errors.

Meta-analysis: hazard ratio (generic inverse variance method)

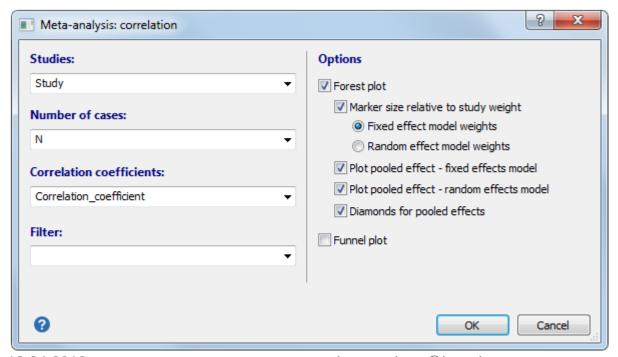
	Refer	ence		
	Α	В	С	
	Reference	Hazard_RatioLog_	SE_of_LOG_HR	
1	Study 1	-0.077	0.212	
2	Study 2	0.012	0.221	
3	Study 3	0.323	0.426	
4	Study 4	0.154	0.230	
5	Study 5	0.051	0.348	
6	Study 6	-0.661	0.232	
7	Study 7	-0.199	0.337	
8	Study 8	0.040	0.245	
9	Study 9	0.305	0.432	
10				

Meta-analysis: continuous measure



For meta-analysis of studies with comparison of means between treated cases and controls, MedCalc uses the Hedges g statistic as a formulation for the standardized mean difference under the fixed effects model. Next, the heterogeneity statistic is incorporated to calculate the summary standardized mean difference under the random effects model (DerSimonian & Laird, 1986).

The standardized mean difference Hedges g is the difference between the two means divided by the pooled standard deviation, with a correction for small sample bias.

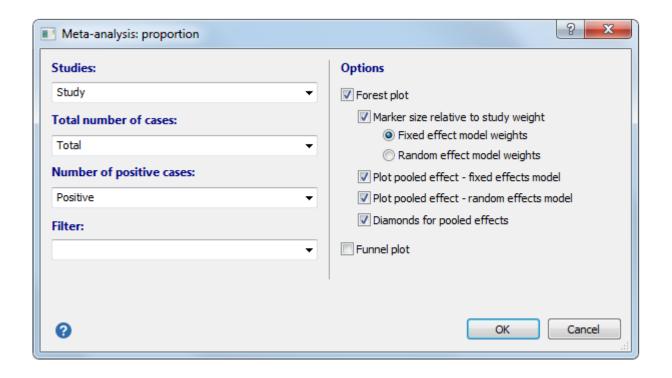


	Study						
	Α	В	С	D	Е	F	G
	Study	Treated_N	Treated_Mean	Treated_SD	Controls_N	Controls_Mean	Controls_SD
1	Smith, 1998	40	23.52	1.38	40	20.12	3.36
2	Brown, 2003	162	25.6	2.3	175	23.5	1.4
3	Wilson, 1997	36	21.7	2.1	36	19.7	2.9
4	Emerson, 2012	20	23.13	2.12	23	23.21	3
5	Jones, 2006	25	25.3	2.2	25	24.9	2.6
6							

Meta-analysis: correlation

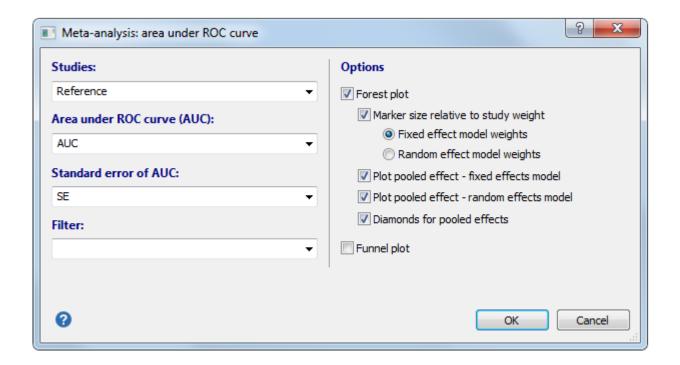
MedCalc uses the Hedges-Olkin (1985) method for calculating the weighted summary Correlation coefficient under the fixed effects model, using a Fisher Z transformation of the correlation coefficients. Next, the heterogeneity statistic is incorporated to calculate the summary Correlation coefficient under the random effects model (DerSimonian and Laird, 1986).

Meta-analysis: correlation



A	Study				
	Α	В	С	D	
	Study	Correlation_coefficient	N		L
	1 Moore, 2006	0.56	133		
	2 Davis, 2008	0.43	149		
	3 Thomas, 1999	0.53	131		
i	4 Miller , 2012	0.51	120		
:	5 Williams, 2012	0.66	111		
	6 Young, 2013	0.46	152		
	7 Baker, 2009	0.33	60		
	8 Adams, 2006	0.38	122		

MedCalc uses a Freeman-Tukey transformation (arcsine square root transformation; Freeman and Tukey, 1950) to calculate the weighted summary proportion under the fixed and random effects model (DerSimonian & Laird, 1986).



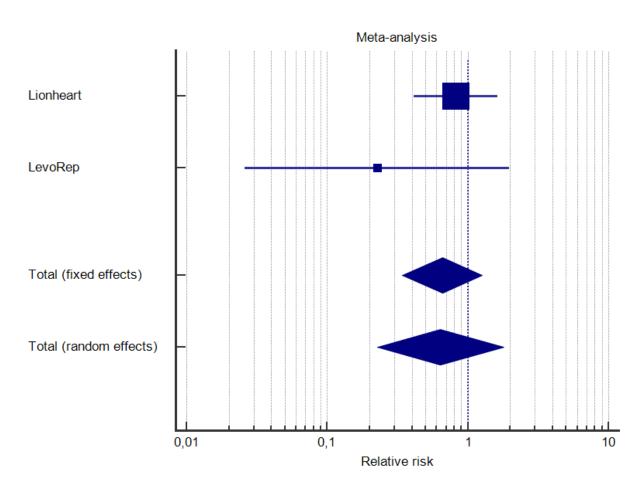
Д	Study				
	Α	В	С	D	E
	Study	Positive	Total		
1	Ward, 1999	226	324		
2	Li, 2012	48	61		
3	Peterson, 2009	43	59		
4	Kim, 2005	191	295		
5	Chang, 2008	2532	5033		
6	Reyes, 2013	64	110		
7	Gauther, 2013	100	183		
8	García, 1007	35	45		

Meta-analysis: AUC

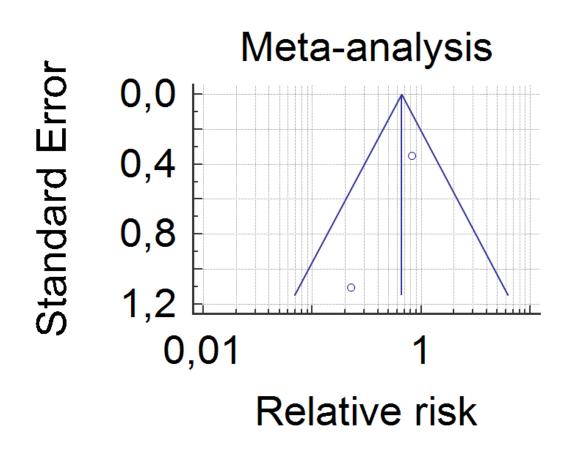
MedCalc uses the methods described by Zhou et al. (2002) for calculating the weighted summary Area under the ROC curve under the fixed effects model and random effects model.

Meta-analysis: AUC

■ Meta-a	nalysis - ROC are	a			×
Α	Refere	ence			
	Α	В	С	D	_
	Reference	AUC	SE		
1	Study 1	0.789	0.057		
2	Study 2	0.724	0.025		
3	Study 3	0.851	0.028		
4	Study 4	0.876	0.029		
5	Study 5	0.782	0.102		
6	Study 6	0.702	0.056		
7	Study 7	0.652	0.038		+
<u> </u>					N Lei


Meta-analysis: relative risk

Variable for studies		study							
1. Intervention groups									
Variable for total number of o	cases	Levosimen	dan_N						
Variable for number of positi	ve cases	es Levosimendan_Deaths		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
2. Control groups									
Variable for total number of o	cases	Placebo_N							
Variable for number of positi	ve cases	Placebo_D	eaths						
Study	Int	ervention	Controls	Relative risk	95% CI	z	Р	Weigh	nt (%)
								Fixed	Random
Lionheart		15/48	8/21	0,820	0,412 to 1,632			90,80	80,61
LevoRep		1/63	4/57	0,226	0,0260 to 1,965			9,20	19,39
Total (fixed effects)		16/111	12/78	0,658	0,341 to 1,269	-1,250	0,211	100,00	100,00
Total (random effects)		16/111	12/78	0,639	0,227 to 1,800	-0,848	0,397	100,00	100,00


Test for heterogeneity

Q	1,3331
DF	1
Significance level	P = 0,2483
I ² (inconsistency)	24,98%
95% CI for I ²	0,00 to 0,00

RESEARCH ARTICLE

Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: the **LION-HEART** multicentre randomised trial

Josep Comín-Colet^{1,2}*, Nicolás Manito², Javier Segovia-Cubero³, Juan Delgado⁴, José Manuel García Pinilla⁵, Luis Almenar⁶, María G. Crespo-Leiro⁷, Alessandro Sionis⁸, Teresa Blasco⁹, Domingo Pascual-Figal¹⁰, Francisco Gonzalez-Vilchez¹¹, José Luis Lambert-Rodríguez¹², María Grau¹³, and Jordi Bruguera¹, on behalf of the LION-HEART Study Investigators

"hard Cleases Stormford in Busset Once, 9419 (coppe did fire Printed In Busset Indicate, and University Accessors in Bussets, Storm, page, "hard Cleases Indicate, larged Universities in Biology, Clean "hard to Printed Indicates Indicates, Storm, page 1, "hard Cleanes Indicates, Cleanes, Printed Universities in Biology, Cleanes, "hard Universities Accessors Indicates, Cleanes, Printed Universities Accessors in Environment, Printed Universities Printed Universities Printed Universities Printed Universities Accessors in Environment, Space "Impact Universities Accessors Indicates, Universities Accessors Indicates, Universities Accessors Indicates Universities Acces

Received 7 November 2016; revised 4 January 2018; accepted 5 January 2018; online (sublish-ahead of firint 6 February 2018)

Aims	The LION-HEART study was a multicentre, double-blind, randomized, parallel-group, placebo-controlled tria- evaluating the efficacy and safety of intravenous administration of intermittent doses of levosimendan in outpatient with advanced chronic heart failure.
Methods and results	Story-one patients from 12 contres were reactional excipent at 2.2 ratio to licenomenda or placific proper reconsing treatment by 4 clorent transcers of times (0.2 g/s/g/min whost bodie) every leveled for 12 weeks. In premary emplore weat the effects on serum concentrations of Neuromai pro-Beyope naturatives; peopled INT openBMP throughout the resultment period in comparison with placified. Secondary emplorate included evaluation of safety closural events and health-related quality of the (PRQ-QL). The was under the curve UVLC pg depting 1) of the best closural events and health-related quality of the (PRQ-QL). The was under the curve UVLC pg depting 1) of the best of M1-gradiff or one for period produced electrometals was registered between the first placified provided comparison with the placified group, the patients on becommendary experienced a refuscion in the ratio of the later the opportunition and punched ratio 0.25 Sec 20.01 \pm 0.02
Conclusions	In this small pilot study, intermittent administration of levosimendan to ambulatory patients with advanced systolic heart failure reduced plasma concentrations of NT-proBNP, womening of HRQoL and hospitalisation for heart failure. The efficacy and salety of this intervention should be confirmed in large trails.
Keywords	Levosimendan • Pulsed infusions • Outpatient setting • Advanced heart failure • Safety • Natriuretic occides

*Corresponding author: PMM (Hospital del Mar Medical Research Institute), Carrer Doctor Algaster, 25-29, 08003 Barreslona, Spain. Tel: +34 93 24831 18, Fax: +34 93 2483398,

© 2018 The Authors European Journal of Heart Failure © 2018 European Society of Cardiology

European Journal of Heart Failure (2014) 16, 898-1 300317 on doi:10.1002/ejf-118	906
---	-----

Efficacy and safety of the pulsed infusions of levosimendan in outpatients with advanced heart failure (LevoRep) study: a multicentre randomized trial

Johann Altenberger¹, John T. Parissis², Angelika Costard-Jaeckle³, Andreas Winter⁴, Christian Ebner⁵, Apostolos Karavidas⁶, Kurt Sihorsch⁷, Ekaterini Avgeropoulou⁸, Thomas Weber⁹, Lida Dimopoulos¹⁰, Hanno Ulmer¹¹, and Gerhard Poelzl¹²*

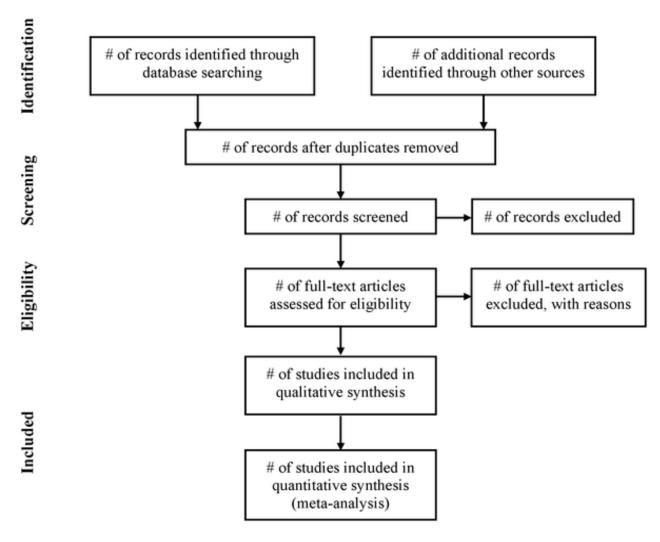
"Varies fundations of the Congress in Indiamental American Section of Contenting Private Section (1995), Marine American Sections (1995), Marine American Sections (1995), Marine Sections (1995), Mar

Alms	The aim of this study was to determine whether intermittent ambulatory treatment with levoeimendan would improve functional capacity, quality of life, and event-free survival in patients with advanced heart failure.
Methods and results	This was a prospective, restrictional, disable shirtly facilities or institution, parallel group that of pulsar intentions of loverimentation in 100 constitution in 1
Conclusion	Intermittent ambidatory treatment with levocimendan in patients with advanced heart failure did not improve significantly functional apactity or quality of like at compared with placebo. An adequately powered, event-driven trial is warranted to enlarge on our findings.
Trial registration:	NCT01065194.
Keywords	Levorimendan • Pulsed Infusions • Advanced heart failure • Outcome • Safety • Outpatient setting

European Journal of Heart Failure @ 2014 European S

Study	Levo_N	Levo_Deaths
Lionheart	48	15
LevoRep	63	1

Placebo_N	Placebo_Deaths
21	8
57	4


Meta-analysis: risk difference

Variable for studies	study	study						
1. Intervention groups								
Variable for total number of cases	Levosim	endan_N						
Variable for number of positive ca	ses Levosim	Levosimendan_Deaths						
2. Control groups								
Variable for total number of cases	Placebo	_N						
Variable for number of positive ca	ses Placebo	_Deaths						
Study	Intervention	vention Controls	Risk Difference	95% CI	Z	Р	Weight (%)	
							Fixed	Random
Lionheart	15/48	8/21	-0,0685	-0,314 to 0,177			8,15	8,15
LevoRep	1/63	4/57	-0,0543	-0,127 to 0,0188			91,85	91,85
Total (fixed effects)	16/111	12/78	-0,0589	-0,153 to 0,0354	-1,224	0,221	100,00	100,00
Total (random effects)	16/111	12/78	-0,0555	-0,126 to 0,0146	-1,550	0,121	100,00	100,00

Test for heterogeneity

Q	0,02123		
DF	1		
Significance level	P = 0,8842		
I ² (inconsistency)	0,00%		
95% CI for I ²	0,00 to 0,00		

Figure 1. Flow of information through the different phases of a systematic review.

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097 https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097

Table 1. Checklist of items to include when reporting a systematic review or meta-analysis.

Section/Topic	#	Checklist Item	Reported or Page #
TITLE			
Title	1	identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appaisal and synthesis methods; results; limitations; conclusion and implications of key findings; systematic review registration number.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known,	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7)	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	ř.
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable included in the meta-analysis).	v.
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions are simplifications made.	1
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this wa done at the study or outcome level), and how this information is to be used in any data synthesis.	1
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., i ²) for each meta-analysis.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression). If done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusion at each stage, ideally with a flow diagram.	•
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period and provide the citations.	1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression (see Item 16)	l
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, usen, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of blas), and at review level (e.g., incomplete retrieval or identified research, reporting blas).	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	6

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097 https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097

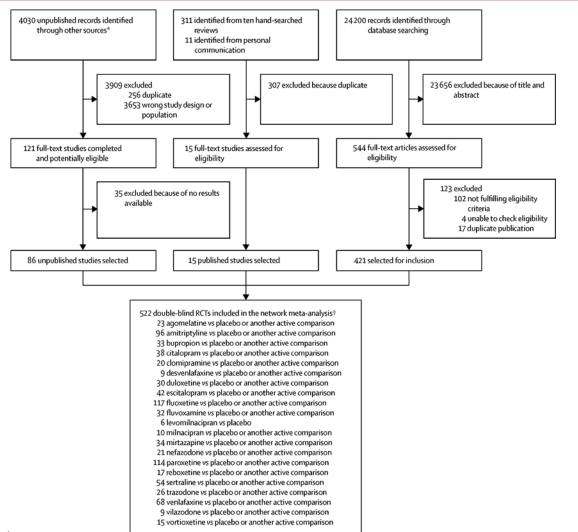
PRISMA for Individual Patient Data

PRISMA for Individual Patient Data systematic reviews (PRISMA-IPD) PRISMA-IPD was published in 2015 and provides guidelines for reporting systematic reviews and meta-analyses of IPD. Systematic reviews and meta-analyses of IPD aim to collect, check, and reanalyze individual-level data from all studies addressing a particular research question.

Statement paper:

Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF; PRISMA-IPD Development Group. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA. 2015;313(16):1657-1665.

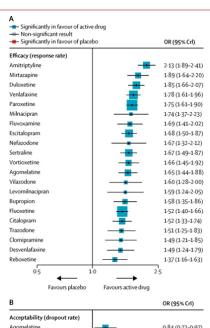
Effect size calculator

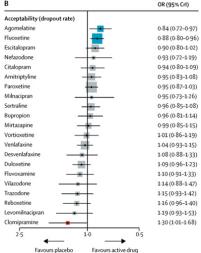


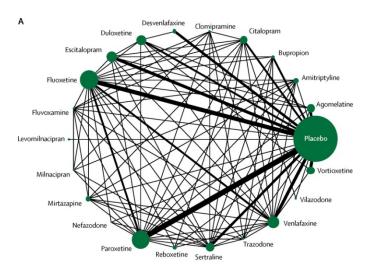
Practical Meta-Analysis Effect Size Calculator David B. Wilson, Ph.D., George Mason University:

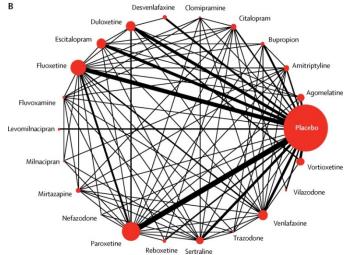
http://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php

Network Meta-Analysis




Cipriani A et al.
Comparative efficacy
and acceptability of 21
antidepressant drugs
for the acute
treatment of adults
with major depressive
disorder: a systematic
review and network
meta-analysis.
Lancet 2018


12.04.2019 Seite 388


Network Meta-Analysis

hanno.ulmer@i-med.ac.at

PRISMA for Network Meta-Analyses

PRISMA for Network Meta-Analyses (PRISMA-NMA)

The PRISMA-NMA extension was published in 2015. It provides guidance for reporting systematic reviews comparing multiple treatments using direct and indirect evidence in network meta-analyses. In addition to providing guidance It also highlights educational information related to key considerations in the practice of network meta-analysis.

Statement/Explanatory paper:

Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann Intern Med. 2015;162(11):777-784.

Richtlinien und Empfehlungen

- Deklaration von Helsinki (World Medical Association)
- Ethische Gesichtspunkte
- GCP ... Good Clinical Practice
 - International anerkannte formale Kriterien
- ICH ... International Committee on Harmonization
 - Ergänzt durch nationale Gesetzgebung (z.B. Arzneimittelgesetz)
- Consort-Richtlinien
 - Studienberichterstellung

Deklaration von Helsinki

- Regelt seit 1964 ethische Prinzipien für die medizinische Forschung am Menschen
- Revision 1983, 1989, 1996, 2000
 - Seit 2000 (52. Generalversammlung, Edinburgh)
- Einleitung (Abschnitt 1-9)
- Allgemeine Grundsätze für jede Art von medizinischer Forschung (Abschnitt 10-27)
- Grundsätze für die medizinische Forschung in Verbindung mit ärztlicher Versorgung (Abschnitt 28-32)

Download: World Medical Association: http://www.wma.net Inoffizielle Übersetzung: http://www.bundesaerztekammer.de

Deklaration von Helsinki Auszug

- Ethische Grundsätze als Leitlinie für Personen, die in der medizinischen Forschung am Menschen tätig sind, incl identifizierbaren menschlichen Daten und Materialien
- Forschung muss allgemein anerkannten wissenschaftlichen Grundsätzen entsprechen
- Anlegen eines Versuchsprotokoll, der Ethikkommission vorlegen
- Überwachung der laufenden Versuche durch die Ethikkommission

Deklaration von Helsinki Auszug

- Forscher muss Ethikkommission informieren über
 - Finanzierung
 - Sponsoren
 - institutionelle Verbindungen
 - potentielle Interessenskonflikte
 - Anreize für Versuchspersonen

International Conference of Harmonisation (ICH)

Mitglieder:

- Kommission der Europäischen Gemeinschaft
- European Federation of Pharmaceutical Industries and Associations (EFPIA)
- Ministry of Health, Labor and Welfare (MHLW)
- Japan Pharmaceutical Manufactures Association (JPMA)
- US Food and Drug Administration (FDA)
- Pharmaceutical Research and Manufactures of America (PhRMA)

Richtlinie ICH E9 (Statistical Priciples for Clinical Trials, 1998)

- Harmonisierung statistischer Vorgehensweisen
 - Biostatistical Methodology in Clinical Trials in Application for Marketing Authorisations (Committee for Propriatary Medicinal Products, 1994)
 - Guidelines on Statistical Analysis of Clinical Studies (Japanese Ministry of Health and Welfare, 1992)
 - Guideline for the Format and Content of Clinical and Statistical Sections of a New Drug Application (U.S. Food and Drug Administration, 1988)

Weitere wichtige Richtlinien

- ICH E6 Guideline for good clinical practice
 - Beschreibung der wichtigsten Elemente
 - Richtlinie muß für Zulassungsstudien befolgt werden
 - Bezieht sich auf Aspekte zur Durchführung klinischer Studien
 - Beschreibt die Rolle der Ethikkommission
 - Beschreibt Aufgaben des Prüfarztes, des Sponsors und des Monitors

CONSORT-Richtlinien

- CONSORT (Consolidated Standards of Reporting Trials)
- 22 internationale Standards und Richtlinien zur Darstellung von Ergebnissen in wissenschaftlichen Arbeiten

hanno.ulmer@i-med.ac.at

- Studienplanung
- Durchführung
- Statistische Analyse
- Interpretation
- Flussdiagramm über die Rekrutierung der Patienten
- Transparenz einer Studie gewährleisten
- www.consort-statement.org/
 - Revidierte Version 2001

Randomisierte Klinische Studien (Randomised Clinical Trials)

Dr. Hanno Ulmer

hanno.ulmer@imed.ac.at
Innsbruck, Oktober 2010

Department für Medizinische Statistik, Informatik und Gesundheitsökonomie, Medizinische Universität Innsbruck

Randomisiert

- Zufällige Zuteilung zu einer Therapieform
 - Stratifizierung
 - Unterteilung in Subgruppen nach bestimmten Merkmalen, wie Alter, Ausgangswerte, ...

Kontrolliert

- Mindestens eine Kontrollgruppe
 - z.B.: Vergleich mit Standardtherapie, Placebo-Kontrolle
 - Statistische Vergleichbarkeit der wesentlichen Merkmale zwischen Gruppen

Verblindet – wenn möglich

- Offen
- Einfach verblindet: Patient weiß nicht, welche Therapie er bekommt
- Doppel-blind: Patient und Arzt wissen nicht, welche Therapie Patient bekommt

Einige einfache Studienpläne

Parallelgruppen

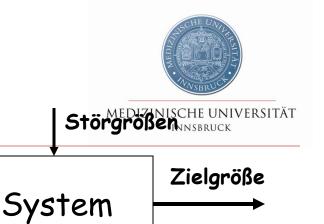
- Zwei oder mehrere unabhängige, aber vergleichbare Gruppen
 - Werden zeitlich parallel behandelt
 - Mit unterschiedlichen Therapieformen

Cross-Over

- Eine Gruppe mit zwei oder mehreren aufeinander folgenden Therapien behandeln
- Jeder Proband erhält jede Therapie aber in unterschiedlicher Reihenfolge
 - Randomisierung der Reihenfolge
 - z.B.: ABC, ACB, BAC, BCA, CAB, CBA
 - Carry-over-Effekte beachten

Faktorielle Pläne

- Kombination von zwei oder mehreren Einflussfaktoren
 - Wechselwirkungen überprüfbar


Parallelgruppenstudie

402

- z.B. Untersuchung der Wirksamkeit eines neuen blutdrucksenkenden Medikaments im Vergleich zu einer Standardtherapie (=Kontrolle)
 - Manchmal Placebo
- Nullhypothese H₀: die beiden Therapien sind im Mittel gleich wirksam
 - z.B. die Änderung des diastolischen Blutdrucks ist im Mittel in beiden Gruppen gleich hoch
 - Die Ungültigkeit der Nullhypothese ist zu beweisen
- Alternativhypothese H₁: die beiden Therapien sind im Mittel unterschiedlich stark wirksam
- Voraussetzung: Die beiden Gruppen stimmen in den wesentlichen Merkmalen überein – siehe Randomisierung
 - Nur die Therapien sind unterschiedlich
 - Strukturgleichheit der Gruppen

Was muss man messen?

Zielgröße(n)

- Haupt- und Nebenzielkriterien
 - In engem Zusammenhang mit dem Studienziel

Einflussgröße

Klinisch relevant

Einflussgröße(n)

• Können Auswirkungen auf die Zielgröße(n) haben

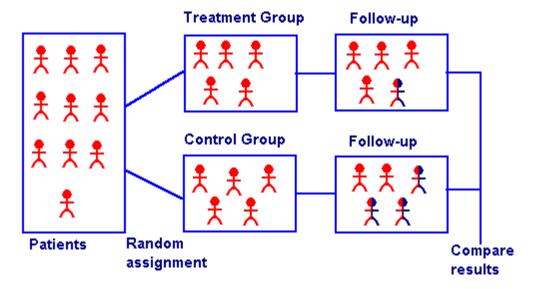
Störgröße(n)

- Nicht von primären Studieninteresse
- Können jedoch das Studienergebnis wesentlich beeinflussen bzw. verzerren ("Bias"!)

Primäre und sekundäre Zielgrößen

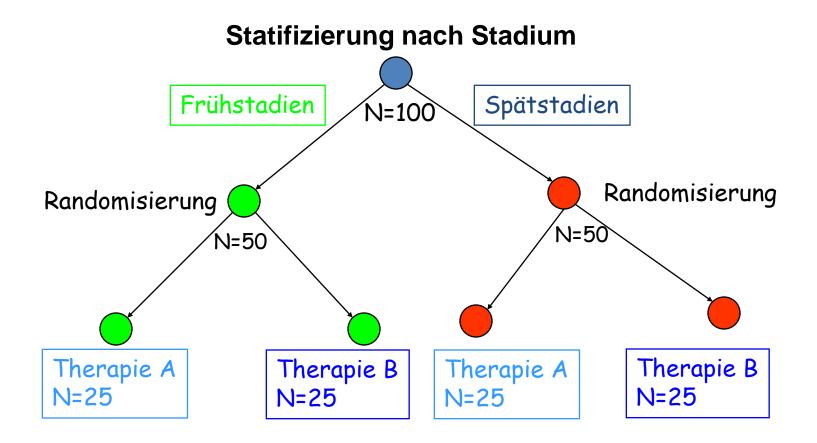
- Wenn möglich nur ein einziges Hauptzielkriterium (=primäre Zielgrösse)
 - Blutdrucksenkung, Überlebenszeit, ...
 - Kann multidimensional sein
 - Fragebogen, QALY, DALY, ...
- Im Studienprotokoll operationalisieren
 - Messbar machen
- Mehrere sekundäre Zielvariablen sind zulässig
- Surrogatkriterien

Vergleichbarkeit der Gruppen



- Bezüglich der
 - Gemessenen Merkmale
 - Dokumentieren
 - Bei der Auswertung berücksichtigen
 - Nicht-gemessenen Merkmale
 - Unbekannten Merkmale
 - Können möglicherweise zu Verzerrungen führen
- Randomisierung
- Stratifizierung
- Paarbildung
 - Zwillinge, Matching

Randomisierung



- Zufällige Zuordnung eines Subjektes/Objektes einer Stichprobe zu einer der Gruppen des Einflussfaktors
 - z.B. mit Hilfe eines Zufallsgenerators
- ZIEL:
 - Vermeidung eines Selektions-Bias
 - Jedes Objekt hat die gleiche Chance zufällig einer Gruppe zugeteilt zu werden
 - Strukturgleichheit (Zusätzliche Stratifizierung ist möglich)

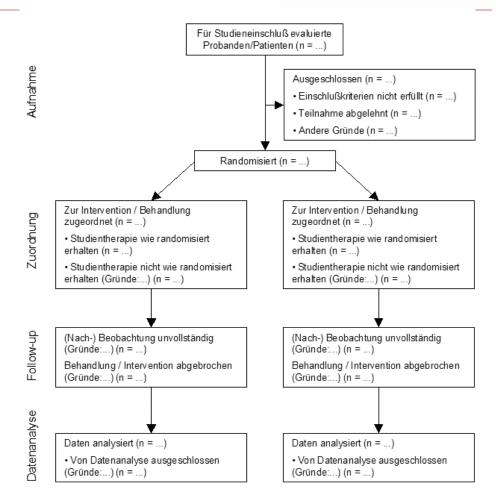
Randomisierung / Stratifizierung

Verblindung

- Ausschaltung von Verzerrungen/systematischen Fehlern (Bias) aufgrund von Vorinformationen
 - Selektions-Bias, Beobachter-Bias
- Ausprägungen des Einflussfaktors sind für den Beobachter unbekannt
 - Doppel-Blindstudie
 - Patient und Arzt wissen nicht, welche Therapieform angewendet wird
 - Nicht immer möglich!!!
- Beschreibung der Art der Verblindung
 - äußere Form, Geschmack, Farbe
 - sichtbare Unterschiede bei Behandlung (z.B. Farbe des Urins)
- Beurteilung des Outcomes
 - unabhängige Beurteilung durch Dritte
- Was passiert, wenn Code gebrochen/entziffert wird?

Fallzahl

- Fixe, berechnete Fahlzahl
 - Basierend auf Annahmen über Unterschiede/Behandlungseffekte
 - Fehler 1. und 2. Art (z.B. Signifikanzniveau=0.05, Power=80%)
- Sequentielle Pläne
 - 1 bis K geplante Zwischenauswertungen
 - Interimsanalysen, Adaptive Studienpläne
 - Möglicherweise frühere Entscheidung
- Berücksichtigung der Ausfallsrate bei statistischen Analyse
 - Intention-to-treat Analyse: alle eingeschlossenen Fälle
 - Per Protokoll Analyse: alle abgeschlossenen Fälle


Patientenflussdiagramm

Intention-To-Treat

versus

- Per-Protocol
- Vergleichbarkeit der Gruppen:
 - Strukturgleichheit
 - Beobachtungsgleichheit
 - Behandlungsgleichheit

Checklist für Fallzahlschätzung (Testproblem)

- Fehler 1. Art (üblicherweise 0,05)
- Fehler 2. Art (0,1 oder 0,2)
- Auswahl des Hauptzielkriteriums
- Zu erwartender Unterschied und Angabe eines Variationsmaßes
- Begründung dafür Literatur oder Vorstudie
- Auswahl des statistischen Tests
- Falls mehrere Hypothesen formuliert werden, Korrektur des Fehler
 1. Art oder Hierarchisierung der Hypothesen
- Drop-Out Rate berücksichtigen

Vorschlag "Studienprotokoll – Statistik"

ad 9 Statistik

9.1 Fallzahlplanung

Die Fallzahl wird in der Regel berechnet aus der primären Zielvariablen, dem klinisch relevanten Unterschied, der in der Studie nachgewiesen werden soll, dem statistischen Verfahren, das dazu verwendet wird, sowie aus dem Fehler 1. Art α und der Power 1- β , die erzielt werden soll. Die Fallzahl ist außerdem abhängig von der Anzahl der Gruppen, die verglichen werden sollen. Angaben zu diesen Parametern sowie zum Verfahren der Fallzahlplanung sind erforderlich.

9.2 Randomisierung

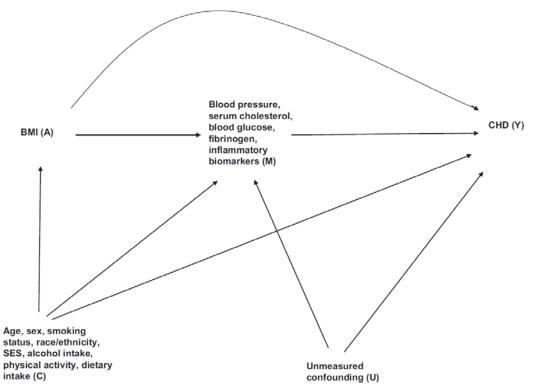
Bei der Beschreibung der Randomisierung sind Angaben erforderlich zur Art der Randomisierung, zur Anzahl der Gruppen und der erforderlichen Strata und ggf. zum organisatorischen Ablauf der Randomisierung. Dabei sind besonders bei verblindeten Studien Maßnahmen aufzulisten, die die Verblindung gewährleisten.

9.3 Statistische Methoden

Zielgrößen, Definition von Auswertungskollektiven, Datenanalyse, Zwischenauswertungen, Verweis auf ICH-GCP E9: Statistical Principles for Clinical Trials

Übung: EK1 Statistik ausfüllen

ntragsformular EK1 Seite 5 von 7	http://www.i-med.ac.at/ethikkommission/
Statistik:	http://www.i-med.ac.abethikkonimission/
Angaben zum Studiendesign und Statistik	
Design: unkontrolliert kontrolliert doppelblind placebokontrolliert cross over andere multizentrisch ja nein konfirmatorisch ja explorativ Randomisierung: ja nein Verblindung: ja nein	☐ Meßwiederholungen
Haupt- und Nebenzielkriterien:	
Null- und Alternativhypothese: verbale und formale Formulierung	
multiples Testen	
multiples Testen ja nein Fehler 1 Art :	
Angaben zur Fallzahlberechnung – Stichprobenumfang	
Fehler 2. Art :	
Statistische Analyse	
Verwendete statistische Verfahren:	
Behandlung der Nebenzielkriterien:	
Wer wird die statistische Analyse durchführen?	
Dokumentationsbogen (CRF) Angaben zur Datenqualitätsprüfung:	
Angaben zum Datenmanagement und Datenschutz	


12.04.2019 hanno.ulmer@i-med.ac.at Seite 413

Confounding, Moderation, Mediation anhand einer Fallstudie erklärt

Epidemiology • Volume 26, Number 2, March 2015

Mediated Effect of Overweight and Obesity on CHD

FIGURE 1. Causal diagram of the relation among BMI (A), metabolic risk factors, prothrombotic and inflammatory biomarkers (M), and CHD (Y) with measured confounders (C)* and unmeasured confounding for BMI, mediators, and CHD (U). Measured confounders were pre-baseline variables.

Regressionsanalyse

Regressionsanalyse als statistische Methode um Zusammenhänge zu beschreiben :

Exposition (z.B. Risikofaktor, Therapie) -- > Outcome (z.B. Erkrankung)

Multivariable Analyse:

k unabhängige Variable (Prädiktoren) -- > 1 abhängige Variable (Outcome)

Verschiedene Arten und Berechnungsweisen von Regressionsanalysen:

Bereits 1805 wurde beispielsweise die Methode der kleinsten Quadrate von Legendre publiziert.

Die wichtigsten Regressionsanalysen

Multivariable Analyse: Regression von kunabhängigen auf 1 abhängige Variable

Abhängige Variable ist metrisch (stetig): Linear Regression

z.B. Geschlecht, Alter, BMI -> systolischer Blutdruck

Geschätzt (berechnet) wird das (standardisierte) Beta

Abhängige Variable ist kategoriell: Logistische Regression

z.B. Geschlecht, Alter, BMI -> KHK in den nächsten 10 Jahren

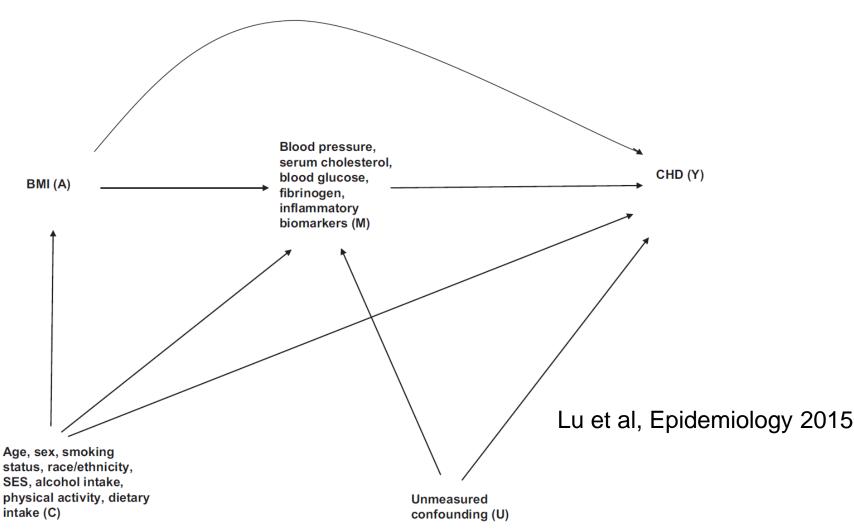
Geschätzt wird das Odds Ratio

Abhängige Variable ist eine Ereigniszeit: Cox proportional hazards Regression

z.B. Geschlecht, Alter, BMI

-> Zeit bis KHK (survival analysis)

Geschätzt wird das Hazard Ratio


Confounding, Moderation, Mediation

Die Regressionsanalyse ermöglicht es, den Effekt einer Prädiktorvariable (z.B. Adipositas) auf eine Zielvariable (z.b. KHK) unter Berücksichtigung von 'dritten Faktoren' (z.B. Geschlecht, Alter, Rauchen, Blutdruck, Cholesterin, Diabetes, etc.) abzuschätzen.

Diese 'dritten Faktoren' können als Confounder, Moderatoren, oder Mediatoren agieren, je nach angenommenen kausalen Wirkzusammenhang.

Die drei Konzepte werden nun am Beispiel (engl.) BMI --- > KHK illustriert.

FIGURE 1. Causal diagram of the relation among BMI (A), metabolic risk factors, prothrombotic and inflammatory biomarkers (M), and CHD (Y) with measured confounders (C)* and unmeasured confounding for BMI, mediators, and CHD (U). Measured confounders were pre-baseline variables.

Example data

Vorarlberg Health Examinations (VHM&PP)

Sex (male, female) categorical

Age in years continuous

Year of examination continuous

Body mass index in kg/m2 continuous

Systolic blood pressure in mmHG continuous

Total cholesterol in mg/dl continuous

Fasting glucose in mg/dl continuous

Smoking (current or past, never) categorical

Coronary heart disease mortality

(ICD-10: I20-I25) continuous and categorical

time to event

Confounding

Confounding:

A "mixing of the effect" of the exposure-disease relationship with a third (or more) factors

Example

Relationship between BMI and CHD incidence:

Crude Hazard Ratio

Obesity (30+ kg/m2) versus normal weight (20-25 kg/m2)

HR = 2.54 95%CI (2.32-2.78)

Sex, age and smoking adjusting hazard ratio:

HR = 1.60 95%CI (1.46-1.75)

Adjusted = controlled for confounding

Calculated with Cox proportional hazards regression analysis

Confounding

Three essential characteristics:

The confounder is associated with the exposure of interest (BMI) The confounder is associated with the disease (CHD) The confounder is not in the causal pathway leading from the exposure of interest (BMI) to the disease of interest (CHD)

Methods for Preventing Confounding in Study Designs

- 1. Stringent inclusion criteria to narrow the variability between study participants
- 2. Randomization (intervention/RCT only)
 In an optimal RCT, study groups only differ regarding the intervention
- 3. Matching (observational studies):

Simple Matching e.g. for age and sex in case-controls studies versus

Propensity Score Matching (involves logistic regression analysis)

Very popular in clinical research:

Blackstone EH. Comparing apples and oranges. J Thoracic and Cardiovascular Surgery 2002; 1: 8-15. An example:

Ruttmann E et al. Second internal thoracic artery versus radial artery in coronary artery bypass grafting: a long-term, propensity score-matched follow-up study. Circulation. 2011 20;124(12):1321-9.

Effect Modification/Moderation

Effect modification occurs when the association between the exposure (BMI) and the disease (CHD) varies by levels of a third factor.

How to assess: include interaction terms into the regression model

Interaction age*obesity p<0.001

Young: BMI ----- > CHD

Old: BMI ----- > CHD

Example

Relationship between BMI and CHD incidence moderated by age: Interaction age*obesity p<0.001

Obesity (30+ kg/m2) versus normal weight (20-25 kg/m2) Sex, age and smoking adjusting hazard ratio:

<50 years of age:

HR = 3.1395%CI(2.27-4.31)

50+ years of age:

HR = 1.5195%CI(1.37-1.66)

Mediation

Mediation occurs if factors, like confounders, are associated with the exposure of interest (BMI) and the disease (CHD), but are **in the causal pathway** leading from the exposure to the disease.

These factors are called mediators:

BMI ---- > blood Pressure, cholesterol, diabetes ---- > CHD

Example

Mediators in the relationship between BMI and CHD incidence:

Sex, age and smoking adjusting hazard ratio: Total effect of BMI (obesity versus normal weight) on CHD: HR = 1.70 95%CI (1.57-1.85)

Direct effect of BMI on CHD HR = 1.3095%CI(1.15-1.47)

Indirect effect mediated by blood pressure, cholesterol and glucose $HR = 1.31\,95\%CI$ (1.16-1.48) (95%CIs estimated by Bootstrap)

HRs ... multiplicative, do not add

Example

Mediators in the relationship between BMI and CHD incidence:

Effect of BMI on CHD mediated by blood pressure, cholesterol and glucose

PERM (Percentage of excess risk mediated) = (1.70-1.30)/(1.70-1)*100 = 57% (approximative formula)

Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014 Mar 15;383(9921):970-83

Mediation Techniques

Traditional approach:

Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986 Dec;51(6):1173-82

New approaches:

Lange T, Rasmussen M, Thygesen LC. Assessing natural direct and indirect effects through multiple pathways. Am J Epidemiol. 2014 Feb 15;179(4):513-8.

VanderWeele T. Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press 2015.

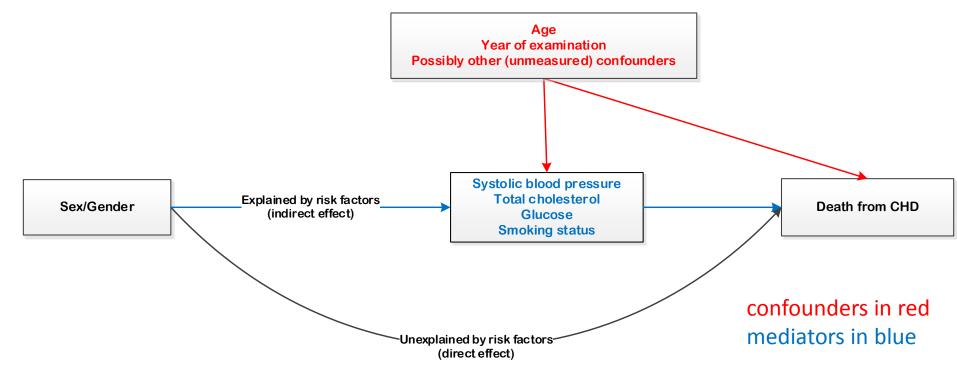
New approaches applied on BMI --- > CHD problem:

Lu Y, Hajifathalian K, Rimm EB, Ezzati M, Danaei G. Mediators of the effect of body mass index on coronary heart disease: decomposing direct and indirect effects. Epidemiology. 2015 Mar;26(2):153-62.

Do risk factors explain the sex/gender gap in mortality from coronary heart disease?

Josef Fritz, Michael Edlinger, Cecily Kelleher, Susanne Strohmaier, Gabriele Nagel, Hans Concin, Elfriede Ruttmann, Margarethe Hochleitner, <u>Hanno Ulmer</u>

Medical University of Innsbruck, Austria, University College Dublin, Ireland University of Oslo, Norway, University of Ulm, Germany Agency for Preventive and Social Medicine, Bregenz, Austria


Purpose

- Age and sex are the strongest predictors of coronary heart disease mortality
- Premature CHD (I20-I25) deaths before age 65 in Europe: 330,000 death cases, of which 77% in males, 23% in females (Nichols et al, Eur Heart J 2014)
- Aim of study: to estimate, how much of this large sex difference is explained by the major risk factors (RFs):
 - systolic blood pressure
 - total cholesterol
 - fasting glucose
 - smoking

Figure 1. Underlying model

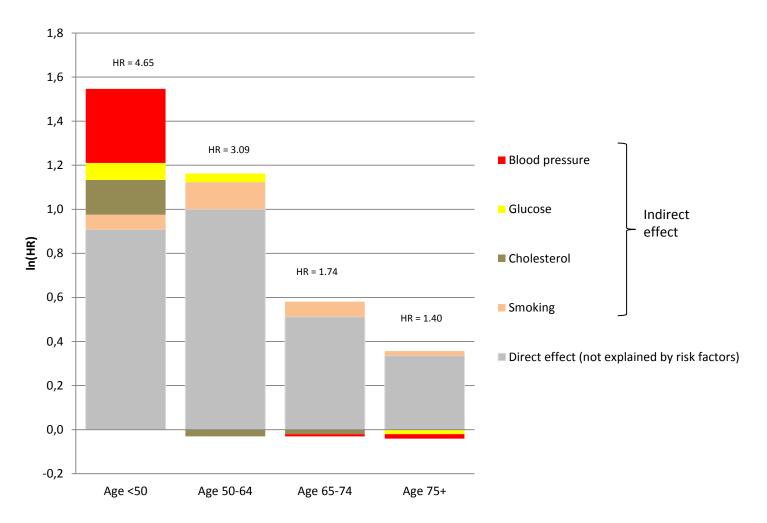
We assume that the 4 RFs are in the causal chain between sex and mortality, mediating the total sex effect,

e.g. male sex causes hypertension, and hypertension causes CHD

Material and methods

- We used prospective cohort data from the Vorarlberg Health Monitoring and Promotion Programme (VHM&PP), Austria
- A total of 172,262 individuals underwent baseline health examinations with fasting measurements of RFs
- There were 3,892 CHD deaths during a follow-up of 14.6 years
- For data analysis, we used a recently developed statistical mediation method (Lange et al, Am J Epidemiol 2014)
- Designed for survival data
- Allowing breakdown into single components of the indirect sex effect (that is explained by the RFs)

Results and conclusions


- The mortality difference between sexes decreased with age
- <50 years: HR=4.7 (95%CI 3.5-6.1)

≥50 years: HR=1.9 (95%CI 1.7-2.1)

- The extent to which risk factors contributed varied with age
- <50 years: the 4 RF explained 41% (95%CI 27-54%) of sex effect
 ≥50 years: the 4 RF explained 8% (95%CI 4-12%) of sex effect
- In younger individuals, the female survival advantage was explained to a substantial part through the pathways of the 4 major risk factors
- As blood pressure and cholesterol were the strongest factors, our results correspond to the oestrogen/testosterone thesis

Figure 2. What risk factors explain

Statistik in medizinischen Studien

SWISS MED WKLY 2007;137:44-49 · www.smw.ch

Statistical errors in medical research – a review of common pitfalls

Alexander M. Strasak, Qamruz Zaman, Karl P. Pfeiffer, Georg Göbel, Hanno Ulmer

Appendix (SMW-Artikel)

Table 1

Statistical errors and deficiencies related to the design of a study.

Study aims and primary outcome measures not clearly stated or unclear

Failure to report number of participants or observations (sample size)

Failure to report withdrawals from the study

No a priori sample size calculation/effect-size estimation (power calculation)

No clear a priori statement or description of the Null-Hypothesis under investigation

Failure to use and report randomisation

Method of randomisation not clearly stated

Failure to use and report blinding if possible

Failure to report initial equality of baseline characteristics and comparability of study groups

Use of an inappropriate control group

Inappropriate testing for equality of baseline characteristics

Table 2

Statistical errors and deficiencies related to data analysis.

Use of wrong statistical tests

Incompatibility of statistical test with type of data examined

Unpaired tests for paired data or vice versa

Inappropriate use of parametric methods

Use of an inappropriate test for the hypothesis under investigation

Inflation of Type I error

Failure to include a multiple-comparison correction

Inappropriate post-hoc Subgroup analysis

Typical errors with Student's t-test

Failure to prove test assumptions

Unequal sample sizes for paired t-test

Improper multiple pair-wise comparisons of more than two groups

Use of an unpaired t-test for paired data or vice versa

Typical errors with χ²-tests

No Yates-continuity correction reported if small numbers

Use of chi-square when expected numbers in a cell are <5

No explicit statement of the tested Null-Hypotheses

Failure to use multivariate techniques to adjust for confounding factors

Table 3

Errors related to the documentation of statistical methods applied. Failure to specify/define all tests used clear and correctly

Failure to state number of tails

Failure to state if test was paired or unpaired

Wrong names for statistical tests

Referring to unusual or obscure methods without explanation or reference

Failure to specify which test was applied on a given set of data if more than one test was done

"Where appropriate" statement

Table 4

Statistical errors and deficiencies related to the presentation of study data. Inadequate graphical or numerical description of basic data

Mean but no indication of variability of the data

Giving SE instead of SD to describe data

Use of mean (SD) to describe non-normal data

Failure to define ± notion for describing variability or use of unlabeled error bars

Inappropriate and poor reporting of results

Results given only as p-values, no confidence intervals given

Confidence intervals given for each group rather than for contrasts

"p = NS", "p <0.05" or other arbitrary thresholds instead of reporting exact p-values

Numerical information given to an unrealistic level of precision ÄΤ

ITÄT

Table 5

Statistical errors and deficiencies related to the interpretation of study findings.

Wrong interpretation of results

"non significant" interpreted as "no effect", or "no difference"

Drawing conclusions not supported by the study data

Significance claimed without data analysis or statistical test mentioned

Poor interpretation of results

Disregard for Type II error when reporting non-significant results

Missing discussion of the problem of multiple significance testing if done

Failure to discuss sources of potential bias and confounding factors