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The principles of statistical testing:

Formulating Hypothesis & Teststatistics & p-values

The most common statistical tests:

Testing measures of location

& 

Testing frequencies
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Formulating Hypothesis & Statistical Tests

Steps in conducting a statistical test:

■ Quantify the scientific problem from a clinical / biological perspective

■ Formulate the problem as a statistical testing problem:

Nullhypothesis versus alternative hypothesis

■ Formulate the model assumptions (distribution of the variable of interest)

■ Define the „error“ you are willing to tolerate

■ Calculate the appropriate test statistic

■ Decide for the Nullhypothesis or against it

Formulating Hypothesis & Statistical Tests

Hypothesis Formulation:

■ Nullhypothesis H0: The conservative hypothesis you want to reject

■ Alternative Hypothesis H1: The hypothesis you want to proof

■ Examples:

Scientific hypothesis:
A new therapy is assumed to better 
prevent myocardial infarctions in risk 
patients than the old therapy.

Scientific hypothesis:
Women and men achieve equally good 
scores in the EMS-AT test

Statistical hypothesis:
H0: new ≥ old

H1: new < old

with
new : the proportion of patients 
experiencing a MI during the study 
receiving the new therapy
old : the proportion of patients 
experiencing a MI during the study 
receiving the old therapy

Statistical hypothesis:
H0: men=women

H1: men≠women

with  
men : mean scores for men
women : mean scores for women

One-sided test Two-sided test
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Formulating Hypothesis & Statistical Tests

Possible decisions in statistical tests:

■ Type I and Type II error cannot be minimized simultaneously

■ Statistical tests are constructed in that way, that the probability of a Type I 
error is not bigger than the significance level (typically set to 0.01 or 0.05)

Example: 
■ Test the new MI-therapy on patients to a significance level of 5%. 
■ In reality, H0 is true and there is no difference between therapies. 
■ If the study is repeated 100 times on 100 different samples, the statistical 

test rejects the Nullhypothesis in maximum 5 of the100 tests.

Decide for

H0 H1

Reality H0 Correct decision Wrong decision:
Type I error ()

H1 Wrong decision:
Type II error ()

Correct decision:
Power (1-)

Quantitative Outcome variable Qualitative Outcome variable

Normal 
distribution

Any other
distribution

Expected
frequency in 
each cell of the
crosstable „high“

Expected
frequency in 
each cell of the
crosstable „low“

Compare
2 groups

t-test Wilcoxon-test / 
Mann-Whitney U-
Test

Chi-Square Fishers exact
test

Compare
>2 groups

Analysis of
Variance
(ANOVA)

Kruskal-Wallis-
Test

Chi-Square Fishers exact
test

The most common statistical tests

Testing frequencies in a 
crosstable:

Are the rows and columns 
independent from each other?

Testing measures of location:

Does the mean/median differ 
between groups
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Testing measures of location

The One-sample t-test (the “standard test” for mean comparisons):

■ Situation: Compare the sample mean (sample) with a specified mean (0)

■ Hypothesis: H0: sample= 0 versus H1: sample  ≠ 0

■ Assumption under the Nullhypothesis: normal distribution (mean 0 and known σ)

Testing measures of location

The One-sample t-test (the “standard test” for mean comparisons):

■ Situation: Compare the sample mean (sample) with a specified mean (0)

■ Hypothesis: H0: sample= 0 versus H1: sample  ≠ 0

■ Assumption under the Nullhypothesis: normal distribution (mean 0 and known σ)

Distribution under
the Nullhypothesis 
(0=2, σ =4):

0

0=0, σ =1

Shift to 0: -0

“Compress” 
using a 
scaling factor
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Testing measures of location

The One-sample t-test (the “standard test” for mean comparisons):

■ Situation: Compare the sample mean (sample) with a specified mean (0)

■ Hypothesis: H0: sample= 0 versus H1: sample  ≠ 0

■ Assumption under the Nullhypothesis: normal distribution (mean 0 and variance σ)

Distribution under
the Nullhypothesis 
(0=2, σ =4):

0

0=0, σ =1

Shift to 0: -0

“Compress” 
using a 
scaling factor

Shift to 0

Scaling factor

Teststatistic:

Testing measures of location

■ If a T-Statistic is very extreme (lower or higher than the critical value)  it is
very likely that it does not belong to the distribution under the nullhypothesis

 reject H0

- tn-1,1-/2 tn-1,1-/2

Area = 1- /2

Acceptance
regionRejection

region
Rejection

region

/2

critical
value

critical
value

T within acceptance region

 Accept H0

T within rejection region

 Reject H0

T within rejection region

 Reject H0
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critical
value

2.6-2.6

Testing measures of location

Example: 
A one sample t-Test comparing the sample mean to 0: 

H0: sample= ; H1: sample≠ results in a test statistic T=2.6

critical
value

~0.005~0.005

P-value (one-sided test)= 0.005 (= Area under the curve)

P-value (two-sided test)= 0.005 + 0.005 = 0.01 (= Area under the curve)

The P-value p is a measure of certainty against the nullhypothesis.

Example: 

A one sample t-Test comparing the sample mean to 0: H0: sample= ; H1: sample≠ 

results in a test statistic T=2.6, which corresponds to a p-value of 0.01.

A popular interpretation, but wrong:

„The probability, that the sample mean is different from 0 is 1%“

The sample mean does not have a probability. It is 0 or not !

Correct interpretation:

„A different random sample is drawn 100 times from the population of interest. The 
population mean is 0 (=Nullhypothesis). Maximum 1 of the 100 experiments results in a 
teststatistic (just by chance), which is ≥ |2.6|“

Formulating Hypothesis & Statistical Tests
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Formulating Hypothesis & Statistical Tests

The smaller the p-value, the more certainty is given that the result is not only 
due to chance

 P value 0.01: only in 1 of 100 experiments you get such a result just by chance

 P value 0.001: only in 1 of 1000 experiments you get such a result just by chance 
 really seldom

 In most cases, a p-value < 0.05 (or <5%) is said to be statistically significant !

 You can also base your decision on the Confidence Interval!

If p < , reject H0

The One-sample t-test in SPSS (We use dataset “Alldata_Tag2.sav”):

Testing measures of location

p-value

T-Statistics
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Testing measures of location

The two-sample t-test for unpaired samples:

■ Situation: Compare the means (1, 2) of two unpaired samples

■ Assumption: normal distribution of both samples, is not known

Here: Equal  assumed, but there are methods (Welch t-test) for unequal 

Hypothesis:

■ Teststatistic: 

with  the pooled variance

■ If T “too extreme  reject H0

■ If p <  reject H0

Labparameter XY 
in Diseased

Labparameter XY 
in Healthy

8.70 3.36

11.28 18.35

13.24 5.19

8.37 8.35

12.16 13.1

11.04 15.65

10.47 4.29

11.16 11.36

4.28 9.09

19.54 (missing)

X 11.024 9.86

S2 15.227 27.038

Testing measures of location

_

T = 0.556

P-value = 0.29

 XY does not differ between
diseased and non-diseased

Example: A biotech company claims that their new biomarker XY can distinguish 
diseased from non-diseased; A pilot study on 10 diseased and 10 healthy persons 
gives the following results:
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■ How to do unpaired T-Test in SPSS:

Testing measures of location

P-value < 0.05

Waist does differ significantly between men and women

Testing measures of location

The two-sample t-test for paired samples:

■ Situation: Compare the means of two paired samples, e.g. compare the means 
of variables in the same patients before a treatment and after the treatment

■ Assumption: normal distribution of both samples, is not known

■ Hypothesis: H0: before= after versus H1: before≠after

Calculate d = xbefore-xafter for each patient

 new Hypothesis: H0: The mean of the difference is 0: d = 

versus H1: The mean of the difference is ≠ 0: d ≠ 
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Testing measures of location

Example: A doctor claims, that he has invented the perfect weight loss method; A 
pilot study on 10 obese individuals gives the following results:

ID kg at
baseline

kg after 6 
months

Difference

1 108 90 18

2 97 97 0

3 88 91 -3

4 120 111 9

5 98 94 4

6 95 91 4

7 87 82 5

8 85 77 8

9 99 103 -4

10 134 127 7

X 101.1 96.3 4.8

S2 242.767 209.122 41.07
 s = 6.41

_

Paired t-test:

T = 2.368

p = 0.042 

 H0 can be rejected

Since you want to prove, that 
kg(before)>kg(after):

one-sided test more appropriate (more power)

p = 0.021

If you would have done a „normal“ 

unpaired t-test:  

p = 0.484 H0 can not be rejected !

Testing measures of location

Analysis of Variance (ANOVA)

■ Situation: Compare the means of k samples (k>2)

■ Assumption: normal distribution of the population,  =…= k

■ Hypothesis: H0: 1= 2 =… = k versus H1: i ≠ j (i ≠ j): At least two of 
the means differ

|  |  |      |  |  |     |  |  |

Group 1 Group 2 Group 3

1 2 3

all observations xij

Variability 
within the group

Difference /Variability 
between the groups

= is the overall mean of the variable                  

= means within the groups
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Testing measures of location

■ Test statistic:

■ Test decision for a two sided test: If F “too extreme”: Reject H0

■ If H0 is rejected, you can tell, that there are at least two groups, which differ 
from each other significantly. You can‘t tell, which groups differ!

 perform pairwise t-tests after overall F-Test

Example:

There are 3 different medications (Med1, Med2, Med3), which are intended 
to increase the HDL-cholesterol levels in patients

1. perform ANOVA as an overall test, if there is a difference between the 
groups

2. If the F-Test was significant, you know, that there is a difference

3. Test Med1 against Med2, Med1 against Med3, Med2 against Med3

 If there are more than 3 groups this can not be done that way (e.g. ANOVA, 
Tukey test)

■ How to do an ANOVA in SPSS:

Testing measures of location

P-value

We only know, that there is a difference between the groups, but not 
between which groups

 post-hoc tests
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■ ANOVA and Post-hoc tests:

Tukey: all pairwise comparisons

Dunnett: All groups are compared to one reference group 
(“Gold standard”)

Testing measures of location

 All groups differ from each other!

All tests so far assumed a normally distributed variable  parametric tests:

Should be preferred over nonparametric test, if appropriate, since they have

the higher power

If not sure about normal distribution: 

Kolmogorov-Smirnov test to test normality assumption

If the assumption does not hold  nonparametric tests:

- Application often for data that are rather ranks instead of numeric

- Robust against outliers and skewed distributions

Testing measures of location

Parametric Tests Nonparametric Tests

T-Test • Wilcoxon-Test
• Wilcoxon rank-sum test
• Mann-Whitney U-Test

ANOVA Kruskal-Wallis-Test
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Testing measures of location

Two sample test on equality of distributions: Wilcoxon / Mann-Whitney U-Test

■ Situation: Compare location measures of two unpaired samples X and Y, if the 
assumption of a t-test does not hold

■ Assumption: the form of the continuous distributions of the variables X and Y is 
the same  test on equality of distributions = test on equality of the medians

■ Hypothesis: H0: xmed= ymed versus H1: xmed ≠ ymed

■ Test is based on the ranks

Example for building ranks: 
Observations
of Var x

Rank 
rank(x)

11 1

15 2

17 3.5

17 3.5

22 4

Testing measures of location

New dialogboxes for
nonparametric tests

Old dialogboxes for
nonparametric tests

Kolmogorov-Smirnov
test to test normality
assumption

Mann-Whitney-U-Test

Kruskal-Wallis-Test
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First step: Checking the normality assumption with Kolmogorov-Smirnov Test

Testing measures of location

and histograms

Here: Test significant

 normality assumption
is not fulfilled

 Perform
nonparametric tests

■ Mann-Whitney-U-Test

Testing measures of location

The distribution of TG differs
significantly between men and 
women
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■ Kruskal-Wallis-Test

Testing measures of location

The distribution of TG differs
significantly between agegroups

Testing frequencies

■ Situation: Compare the frequencies between two groups

Or: Test, if two categorical variables X (i=1,…k) and 

Y (j=1,…m) depend on each other

■ A possible scenario: Compare the number of smokers, ex-smokers and never-
smokers (e.g. Y) between men and women (e.g. X)

All situations you 
can group into
contingency tables 

Y

1 … m Row sum 

X

1 h11 … h1m h1.

2 h21 … h2m h2.

: : : :

k hk1 … hkm hk.

Column sum h.1 h.m n
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Testing frequencies

Two sample test on frequencies: -test of independence:

■ Hypothesis: H0: X and Y are independent from each other

H1: X and Y depend on each other

■ Assumption: 

 none of the cells should have a very rare expectancy

(number of expected counts in each cell ≥ 1 and for at least 80% of the cells: ≥ 5)

 if assumption is not fulfilled  use Fishers exact test (also given out by SPSS)

■ Idea to construct the teststatistic: 

Compare the observed numbers in each cell with the expected numbers (under the 

assumption that the two factors are independent)

32

Testing frequencies

Table of observed numbers

Y

1 … m 

X

1 h11 … h1m h1.

2 h21 … h2m h2.

: :

k hk1 … hkm hk.

 h.1 h.m n

h1. …hk. , h.1 …h.m are the 
margin probabilities

Smoking
status (Y)

Gender (X)

Current 
Smoker

Ex-
Smoker

Never
Smoker

Row Total

Men 144 310 268 722

Women 117 143 475 735

Column Total 261 453 743 1457

X= Gender

Y= Smoking
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Testing frequencies

Table of expected numbers:

Y

1 … m 

X

1 h1.h.1/n … h1.h.m/n h1.

2 h2.h.1/n … h2.h.m/n h2.

: :

k hk.h.1/n … hk.h.m/n hk.

 h.1 h.m n

Expected number in each cell:

(Row sum * Columns sum)/ Total sum 

Smoking
status

Gender

Current 
Smoker

Ex-
Smoker

Never
Smoker

Row Total

Men 144 310 268 722

Women 117 143 475 735

Column Total 261 453 743 1457

Expected number in the upper left cell:

722*261/1457 = 129.336

X= Gender

Y= Smoking

34

Testing frequencies

Observed: Expected:

Y

1 … m 

X

1 h11 … h1m h1.

2 h21 … h2m h2.

: :

k hk1 … hkm hk.

 h.1 h.m n

Y

1 … m 

X

1 h1.h.1/n … h1.h.m/n h1.

2 h2.h.1/n … h2.h.m/n h2.

: :

k hk.h.1/n … hk.h.m/n hk.

 h.1 h.m n

Oij
Eij

Teststatistic:

Test decision:   If „too extreme“ (or p < )  Reject H0
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Testing frequencies

Example:

Observed: Expected:

Smoking
status

Gender

Current 
Smoker

Ex-
Smoker

Never
Smoker

Row Total

Men 129.336 224.479 368.185 722

Women 131.664 228.521 374.815 735

Column Total 261 453 743 1457

Smoking
status

Gender

Current 
Smoker

Ex-
Smoker

Never
Smoker

Row Total

Men 144 310 268 722

Women 117 143 475 735

Column Total 261 453 743 1457

121.9218 >> critical value  test is significant (p = 3.3e-27)

 the Null-Hypothesis, that gender and smoking status are independent can be rejected

■ How to calculate the Chi-squared-test of independence in SPSS:

Testing frequencies

P-value

Assumption for Chi-
Square test is fulfilled. 
If it is not fulfilled: 
Fishers exact test !
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Testing frequencies

Fishers exact
test:

Risk estimates
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■ Often, you want to assess risk: 

That is, risk to get a disease, if a risk factor is present

relative to persons not having this risk factor 

(e.g. smoking, obesity etc…) 

■ Risk estimates: 

► Relative Risk:

But: can only be estimated in prospective studies!

►Odds Ratio:

Approximates the RR and can be estimated in any kind of studies

► Hazard Ratio HR: Can be estimated in “survival studies”, where the time 
to event (e.g. death or a non-fatal event as MI/stroke) is known

Odds Ratio

OR = 1 The risk factor is not associated with the disease

OR > 1 Positive  association of risk factor with the disease 

(Persons with the risk factor have a higher probability for the 

disease as persons without)

OR < 1 Negative  association of “risk” factor with the disease 

(Persons with the “risk” factor have a lower probability for the 

disease as persons without)  factor is protective

Odds Ratio

Interpretation of Odds Ratio:
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Odds Ratio

Calculation of Odds Ratio 
in SPSS using Crosstabs:

 Obese persons have a higher risk
having Triglyceride values above 200

OR

CI for OR

TG < 200 vs. 
TG ≥ 200 

The multiple testing problem
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The multiple testing problem

The situation: 

Consider a dataset with 100 independent parameters, which do not play a role in the 
etiology of the disease of interest (what you don‘t know, of course) 

 100 statistical tests are performed with a significance level of =0.05

 The tests are constructed in that way, that maximum 5 of 100 tests reject the 
Nullhypothesis, although it is true

 You expect 5 tests to be significant just by chance

44

The multiple testing problem

■ The probability to get at least one Type I error increases with increasing 
number of tests.

■ Family-wise error rate (the error rate for the complete family of tests 
performed): *=1-(1-)k, with  being the comparison-wise error rate

 The significance level has to be modified for multiple testing situations

k * (=0.05)

1 0.05

5 0.226

10 0.401

100 0.994

The probability 
to get one or more 
false discoveries
(Type I error)
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The multiple testing problem

The Bonferroni correction method:

■ Control the comparison-wise error rate: Reject H0, if p < 

■ Control the family-wise error rate (including k tests): Reject H0, if p < /k 

 Advantage: simple

■ Problem: Bonferroni-correction increases the probability of a type II error 

 the power of detecting a true association is reduced  Disadvantage:
too conservative

■ Other correction methods: the post-hoc tests that can be performed after an 

ANOVA (e.g. Tukey, Dunnett) are already corrected for multiple testing 

k /k (=0.05)

1 0.05

5 0.05/5 = 0.01

10 0.05/10 = 0.005

100 0.05/100 = 0.0005

46

The multiple testing problem

How to report p-values / results of significance tests in papers:

■ If you are only interested in test decisions (significant or not) to a pre-specified -
level   report only the decision 

■ If you are interested in the „certainty“ of your test decision  report all p-values

(can be interpreted as strength of evidence against the Nullhypothesis)

■ In the case of multiple testing: report all raw p-values + a reasonable correction

How it should be (1):

Statistical test P-value

Test 1 0.005

Test 2 0.02

Test 3 n.s.

Test 4 <0.0001

Statistical test P-value

Test 1 0.005*

Test 2 0.02

Test 3 0.2

Test 4 0.00008*

*still significant  even after  Bonferroni  
correction for  multiple testing
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Sample size estimation

Sample size estimation

Question: How many individuals do you have to include in your study to get a 
reliable result ?

We want to maximize the probability 

for rejecting H0, if H1 is true 

while keeping the Type I error fixed

What do you have to know

to calculate the sample size 

needed?

Decide for

H0 H1

Reality H0 Correct Wrong:
Type I error ()

H1 Wrong:
Type II error ()

Correct: Power

1. Power (typically set to 80% or 90%)

2. Type I error  (typically set to 0.05)

3. The difference you want to find (for t-tests: 
the mean difference between groups)

4. standard deviation / measure of variance
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Sample size estimation

Example

■ Hypothesis: H0: A= B versus H1: A ≠ B  two-sided t-test 

■ You consider a difference of 10 as relevant

■ From former studies, you know, that the standard deviation is ~ 15 mmHG

■ So far, you have recruited 20 patients in each treatment arm

What is your power?

http://campus.uni-muenster.de/fileadmin/einrichtung/imib/lehre/skripte/biomathe/bio/fallz.html

Sample size estimation

How to increase the power: 

1. Increase the sample size n

2. Increase the difference you want to show
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Sample size estimation

How many patients do you need to reach a power of 80%?

Sample size estimation

Comparing proportions: 

Example: Test differences in the proportions of Myocardial Infarctions between 
treatment A and B; Hypothesis: H0: A = B versus H1: A ≠ B  -test

http://campus.uni-muenster.de/fileadmin/einrichtung/imib/lehre/skripte/biomathe/bio/fallb.html
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Sample size estimation

Some remarks for sample size estimation / power calculation:

■ Sample size estimation is not exact, it is not more than an educated guess !
Why? You have to provide the difference you want to test & the standard 
deviation Based on experience, former studies, gut feeling etc…

■ Post-hoc power:

■ Freeware program for more sophisticated statistical models: G*Power 3

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

Power analysis is useless, if the
analysis has already been performed!

Power is a probability. Retrospectively, 
the outcome of the test is known  the 
retrospective power is 1, if the test was 
significant, and 0 otherwise. 
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